
USER’S GUIDE FOR SNOPT 5.3:
A FORTRAN PACKAGE FOR

LARGE-SCALE NONLINEAR PROGRAMMING

Philip E. GILL
Department of Mathematics

University of California, San Diego

La Jolla, California 92093-0112

Walter MURRAY and Michael A. SAUNDERS
Systems Optimization Laboratory

Department of EESOR

Stanford University

Stanford, California 94305-4023

DRAFT, October 1997

Abstract

SNOPT is a set of Fortran subroutines for minimizing a smooth function subject
to constraints, which may include simple bounds on the variables, linear constraints
and smooth nonlinear constraints. SNOPT is a general-purpose optimizer, designed to
find locally optimal solutions for models involving smooth nonlinear functions. They
are often more widely useful. (For example, local optima are often global solutions,
and discontinuities in the function gradients can often be tolerated if they are not too
close to an optimum.) Ideally, users should provide gradients. Unknown components
are estimated by finite differences.

SNOPT incorporates a sequential quadratic programming (SQP) method that ob-
tains search directions from a sequence of quadratic programming subproblems. Each
QP subproblem minimizes a quadratic model of a certain Lagrangian function sub-
ject to a linearization of the constraints. An augmented Lagrangian merit function is
reduced along each search direction to ensure convergence from any starting point.

SNOPT is most efficient if only some of the variables enter nonlinearly, or if the
number of active constraints (including simple bounds) is nearly as large as the number
of variables. SNOPT requires relatively few evaluations of the problem functions.
Hence it is especially effective if the objective or constraint functions are expensive to
evaluate.

The source code for SNOPT is suitable for any machine with a reasonable amount
of memory and a Fortran compiler. SNOPT may be called from a driver program
(typically in Fortran, C or MATLAB).

Keywords: Nonlinear programming, constrained optimization, nonlinear constraints,
SQP methods, limited-storage quasi-Newton updates, Fortran software.

Contents

1. Introduction 3
1.1 Subroutines . 3
1.2 Files . 3

2. Description of the method 5
2.1 Treatment of constraint infeasibilities . 6

3. Identifying structure in the objective and constraints 9

4. Specification of subroutine snopt 11

5. User-Supplied Subroutines 17
5.1 Subroutine funobj . 18
5.2 Subroutine funcon . 20
5.3 Constant Jacobian elements . 22
5.4 Example . 23

6. The SPECS File 25

7. SPECS File Checklist and Defaults 25
7.1 Subroutine snInit (to read a Specs file) . 27
7.2 Subroutines snprm, snprmi, snprmr (to define a single option) 29
7.3 Description of the optional parameters . 31

8. Output 50
8.1 The major iteration Log . 50
8.2 The minor iteration Log . 52
8.3 Basis Factorization Statistics . 54
8.4 Crash statistics . 55
8.5 EXIT Conditions . 56
8.6 Solution Output . 62
8.7 The SOLUTION file . 64
8.8 The SUMMARY file . 64

9. BASIS Files 66
9.1 NEW and OLD BASIS Files . 66
9.2 PUNCH and INSERT Files . 68
9.3 DUMP and LOAD Files . 69
9.4 Restarting Modified Problems . 70

1. Introduction 3

1. Introduction

SNOPT is a collection of Fortran 77 subroutines for solving the nonlinear programming
problem, which is assumed to be stated in following form:

NP minimize
x

f(x)

subject to l ≤

 x

F (x)
Gx

 ≤ u, (1.1)

where l and u are constant lower and upper bounds, f is a smooth scalar objective function,
G is a sparse matrix, and F (x) is a vector of smooth nonlinear constraint functions {Fi(x)}.
(The optional parameter maximize may be used to specify a problem in which f is maximized
instead of minimized.) If all constraints are linear, F is absent and the problem is said to
be linearly constrained. In general, the objective and constraint functions are structured in
the sense that they are formed from linear combinations of linear and nonlinear functions.
This structure can be exploited by SNOPT during the solution process (see §3 below).

Ideally, the first derivatives (gradients) of f and Fi should be known and coded by the
user. If only some gradients are known, SNOPT will estimate the missing ones with finite
differences.

Note that upper and lower bounds are specified for all variables and constraints. This
form allows full generality in specifying various types of constraint. In particular, the jth
constraint may be defined as an equality by setting lj = uj . If certain bounds are not
present, the associated elements of l or u may be set to special values that are treated as
−∞ or +∞.

1.1. Subroutines

SNOPT is accessed via the following routines:

snopt (§4) The top-level routine, called by the user.

funcon, funobj (§5) Called by SNOPT. Supplied by the user. Define the constraint
functions F (x) and objective f(x) for given vectors x.

snInit (§7.1) MUST be called before the first call to SNOPT . Called by the user to ini-
tialize default parameters and read a SPECS file (if any).

snprm, snprmi, snprmr (§7.1) Called by the user to input a single optional parameter.

1.2. Files

SNOPT reads or creates certain external files. The most important of these are described
in the following.

SPECS file. If present, this is input by calling snInit.

Summary file. Intended for output to the screen in an interactive environment. It con-
tains error messages and a brief iteration log, or may be suppressed.

Print file. Intended for a permanent file. It contains error messages, a more detailed
iteration log, and optionally the printed solution.

4 User’s Guide for SNOPT

Unit numbers for for the specs, print and summary files are defined at compile time;
typically they will be 5, 6 and 9, but they depend upon the installation. For a more detailed
description of the files that can be created by SNOPT, see §9.

2. Description of the method 5

2. Description of the method

Here we briefly describe the main features of the SQP algorithm used in SNOPT and intro-
duce some terminology used in the description of the subroutine and its arguments.

The upper and lower bounds on the m components of F and Gx are said to define the
general constraints of the problem. SNOPT converts the general constraints to equalities
by introducing a set of slack variables s, where s = (s1, s2, . . . , sm)T . For example, the
linear constraint 5 ≤ 2x1 + 3x2 ≤ +∞ is replaced by 2x1 + 3x2 − s1 = 0 together with the
bounded slack 5 ≤ s1 ≤ +∞. The problem defined by (1.1) can therefore be rewritten in
the following equivalent form

minimize
x,s

f(x)

subject to

(
F (x)
Gx

)
− s = 0, l ≤

(
x

s

)
≤ u.

The linear and nonlinear general constraints become equalities of the form F (x) − sN = 0
and Gx− sL = 0, where sL and sN are known as the linear and nonlinear slacks.

The basic structure of SNOPT involves major and minor iterations. The major iterations
generate a sequence of iterates (xk) that satisfy the linear constraints and converge to a point
that satisfies the first-order conditions for optimality. At each iterate a QP subproblem is
used to generate a search direction towards the next iterate (xk+1). The constraints of the
subproblem are formed from the linear constraints Gx−sL = 0 and the nonlinear constraint
linearization:

F (xk) + F ′(xk)(x− xk)− sN = 0,

where F ′(xk) denotes the Jacobian matrix of first derivatives of F (xk) evaluated at xk. The
QP constraints therefore comprise the m linear constraints

F ′(xk)x −sN = −F (xk) + F ′(xk)xk,

Gx −sL = 0,

where x and s are bounded above and below by u and l as before. If the m × n matrix A
and m-vector b are defined as

A =

(
F ′(xk)
G

)
and b =

(
−F (xk) + F ′(xk)xk

0

)
,

then the QP subproblem can be written as

minimize
x,s

q(x) subject to Ax− s = b, l ≤

(
x

s

)
≤ u,

where q(x) is a quadratic approximation to the modified Lagrangian function (see later).
The linear constraint matrix A above is input to SNOPT by means of the arguments a(*),
ha(*), and ka(*) (see Section 4). Access to this matrix allows the user to specify the
pattern of nonzero elements in F ′(x) and G, and identify any nonzero elements that remain
constant throughout the minimization.

Solving the QP subproblem is itself an iterative procedure, with the minor iterations
of an SQP method being the iterations of the QP method. At each minor iteration, the
constraints Ax− s = b are (conceptually) partitioned into the form

BxB + SxS +NxN = b,

6 User’s Guide for SNOPT

where the basis matrix B is square and nonsingular. The elements of xB xS and xN are
called the basic, superbasic and nonbasic variables respectively; they are a permutation
of the elements of x and s. At a QP solution, the basic and superbasic variables will lie
somewhere between their bounds, while the nonbasic variables will be equal to one of their
upepr or lower bounds. At each iteration, xS is regarded as a set of independent variables
that are free to move in any desired direction, namely one that will improve the value of the
QP objective (or sum of infeasibilities). The basis variables are then adjusted in order to
ensure that that (x, s) continues to satisfy Ax− s = b. The number of superbasic variables
(nS say) therefore indicates the number of degrees of freedom remaining after the constraints
have been satisfied. In broad terms, nS is a measure of how nonlinear the problem is. In
particular, nS will always be zero for LP problems.

If it appears that no improvement can be made with the current definition of B, S and
N , a nonbasic variable is selected to be added to S, and the process is repeated with the
value of nS increased by one. At all stages, if a basic or superbasic variables encounters one
of its bounds, the variables is made nonbasic and the value of nS is decreased by one.

Associated with each of the m equality constraints Ax − s = b are the dual variables
π. Similarly, each variable in (x, s) has an associated reduced gradient dj . The reduced
gradients for the variables x are the quantities g − ATπ, where g is the gradient of the
QP objective; and the reduced gradients for the slacks are the dual variables π. The QP
subproblem is optimal if dj ≥ 0 for all nonbasic variables at their lower bounds, dj ≤ 0
for all nonbasic variables at their upper bounds, and dj = 0 for superbasic variables. In
practice, an approximate QP solution is found by relaxing these conditions on dj (see the
Minor optimality tolerance described in §7.3).

If x̂k, ŝk and π̂k denote the optimal values of x, s and π from the QP subproblem, new
estimates of the NP solution are computed using a linesearch on the augmented Lagrangian
merit function

M(x, π, s) = f(x)− πT
(
F (x)− sN

)
+ 1

2

(
F (x)− sN

)T
D
(
F (x)− sN

)
, (2.1)

where D is a diagonal matrix of penalty parameters. If x̂k, ŝk and π̂k denote the optimal
values of x, s and π from the QP subproblem, and (xk, sk, πk) are the current estimates of
the optimal values (x∗, s∗, π∗), then the linesearch determines a step αk (0 < αk ≤ 1) such
that the new point xk+1

πk+1

sk+1

 =

 xk

πk

sk

+ αk

 x̂k − xk
π̂k − πk
ŝk − sk

 (2.2)

gives a sufficient decrease in the merit function (2.1). When necessary, the penalties in
D are increased by the minimum-norm perturbation that ensures descent for M [6]. As in
NPSOL, sN is adjusted to minimize the merit function as a function of s prior to the solution
of the QP subproblem. For more details, see [5, 2].

2.1. Treatment of constraint infeasibilities

SNOPT makes explicit allowance for infeasible constraints. Infeasible linear constraints are
detected first by solving a problem of the form

FLP minimize
x,v,w

eT (v + w)

subject to l ≤

(
x

Gx− v + w

)
≤ u, v ≥ 0, w ≥ 0,

2. Description of the method 7

where e is a vector of ones. This is equivalent to minimizing the sum of the general linear
constraint violations subject to the simple bounds. (In the linear programming literature,
the approach is often called elastic programming.)

If the linear constraints are infeasible (v 6= 0 or w 6= 0), SNOPT terminates without
computing the nonlinear functions.

If the linear constraints are feasible, all subsequent iterates satisfy the linear constraints.
(Such a strategy allows linear constraints to be used to define a region in which f and c
can be safely evaluated.) SNOPT proceeds to solve NP as given, using search directions
obtained from a sequence of quadratic programming subproblems. Each QP subproblem
minimizes a quadratic model of a certain Lagrangian function subject to linearized con-
straints. An augmented Lagrangian merit function is reduced along each search direction
to ensure convergence from any starting point.

If a QP subproblem proves to be infeasible or unbounded (or if the dual variables π
for the nonlinear constraints become large), SNOPT enters “elastic” mode and solves the
problem

NP(ρ) minimize
x,v,w

f(x) + ρeT (v + w)

subject to l ≤

 x

F (x)− v + w

Gx

 ≤ u, v ≥ 0, w ≥ 0,

where ρ is a nonnegative parameter (the elastic weight), and f(x) + ρeT (v + w) is called
a composite objective. If ρ is sufficiently large, this is equivalent to minimizing the sum of
the nonlinear constraint violations subject to the linear constraints and bounds. A similar
`1 formulation of NP is fundamental to the S`1QP algorithm of Fletcher [3]. See also Conn
[1].

8 User’s Guide for SNOPT

References
[1] A. R. Conn, Constrained optimization using a nondifferentiable penalty function, SIAM J. Numer.

Anal., 10 (1973), pp. 760–779.

[2] S. K. Eldersveld, Large-scale sequential quadratic programming algorithms, PhD thesis, Department
of Operations Research, Stanford University, Stanford, CA, 1991.

[3] R. Fletcher, An `1 penalty method for nonlinear constraints, in Numerical Optimization 1984, P. T.
Boggs, R. H. Byrd, and R. B. Schnabel, eds., Philadelphia, 1985, SIAM, pp. 26–40.

[4] R. Fourer, Solving staircase linear programs by the simplex method. 1: Inversion, Math. Prog., 23
(1982), pp. 274–313.

[5] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, User’s guide for NPSOL (Version 4.0):
a Fortran package for nonlinear programming, Report SOL 86-2, Department of Operations Research,
Stanford University, Stanford, CA, 1986.

[6] , Some theoretical properties of an augmented Lagrangian merit function, in Advances in Opti-
mization and Parallel Computing, P. M. Pardalos, ed., North Holland, North Holland, 1992, pp. 101–128.

3. Identifying structure in the objective and constraints 9

3. Identifying structure in the objective and constraints

Consider the following nonlinear optimization problem with four variables (u, v, z, w):

minimize (u+ v + z)2 + 3z + 5w

subject to u2 + v2 + z = 2
u4 + v4 + w = 4
2u+ 4v ≥ 0

z ≥ 0 w ≥ 0.

This problem has several characteristics that can be exploited by SNOPT:

• The objective function is nonlinear, and it is the sum of a nonlinear function of the
three variables (u, v, z), and a linear function of the variables (z, w).

• The first two constraints are nonlinear constraints. The third constraint is linear.

• Each nonlinear constraint function is the sum of a nonlinear function of the two
variables (u, v), and a linear function of (z, w).

SNOPT allows funobj and funcon to be defined so that only the nonlinear variables
are involved. This simplifies the coding of the routines and allows a smaller Jacobian to be
evaluated at each step.

In the following, we will define this nonlinear structure for the simple problem given
above.

For the objective function, the idea is to define the function f = (u+v+z)2 that includes
only the nonlinear part of the objective. The variables u, v, z associated with this function
are known as nonlinear objective variables. The number of nonlinear objective variables
is given by the snopt input argument nnObj. They are the only variables needed in the
subroutine funobj, the linear part 3z + 5w of the objective is input to SNOPT as part of
the linear constraint matrix A (see the parameter iObj below.)

If (x′, y′) denote the nonlinear and linear objective variables, then the objective may be
written in the form

f(x′) + cTx′ + dT y′,

where f is the nonlinear part of the objective and c, d are constant vectors.
The constraint functions are separated in a similar way by considering a vector function

F that contains only the nonlinear terms of the nonlinear constraints. In the example above,
F is a function of the two variables u and v, with F1 = u2 + v2, and F2 = u4 + v4. The
variables (u, v) are known as the nonlinear Jacobian variables. The number of nonlinear
constraint variables is specified by means of the snopt input argument nnJac below. They
are the only variables needed in the user-supplied subroutine funcon.

As in the case of the objective function, the variables are partitioned as (x, y), where x
defines the nonlinear constraint variables. In general x and x′ have differing dimensions, as
in the example above. The nonlinear objective variables and nonlinear Jacobian variables
together comprise the nonlinear variables, so that the number of nonlinear variables will be
the larger of the nonlinear objective variables and nonlinear Jacobian variables. When calling
SNOPT the user implicitly orders the variables of the problem. This ordering determines
other quantities such as the order of the columns of the constraint Jacobian. When funcon
and funobj involve only nonlinear variables, it is important that the nonlinear variables
occur first in x(*). In particular, the constraint functions must be in the form(

F (x) +A2y

A3x+A4y

)
, (3.1)

10 User’s Guide for SNOPT

which ensures that the Jacobian is of the form

A =

(
J A2

A3 A4

)
,

with the Jacobian of F always appearing in the top left-hand corner of the full Jacobian.
The (constant) linear terms A2, A3 and A4 are input to SNOPT via the arguments a(*),
ha(*), and ka(*) (see Section 4).

If there are more nonlinear objective variables than nonlinear constraint variables, the
position of J in A implies that any nonlinear objective variables that are not nonlinear
constraint variables should appear last. In the example above, this would imply the ordering
x1 ≡ u, x2 ≡ v, x3 ≡ z, and x4 ≡ w.

The inequalities l1 ≤ F (x)+A2y ≤ u1 and l2 ≤ A3x+A4y ≤ u2 implied by the constraint
functions (3.1) are known as the nonlinear and linear constraints respectively. Together,
these two sets of inequalities constitute the general constraints.

The constraint vector F (x) (3.1) and (optionally) its partial derivative matrix J(x) are
set in subroutine funcon (see below). The matrices A2, A3, A4 and the sparsity pattern of
J(x) are entered column-wise in the arrays a, ha, ka (below).

If all constraint gradients are known (Derivative Level = 2 or 3), any Jacobian ele-
ments that are constant may be given their correct values in the in the arrays a, ha, ka,
and then they need not be reset by subroutine funcon. This includes values that are iden-
tically zero—such elements do not have to be specified in funcon. In other words, Jacobian
elements are assumed to be zero unless specified otherwise.

4. Specification of subroutine snopt 11

4. Specification of subroutine snopt

Problem NP is solved by a call to subroutine snopt, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the user routines funobj and funcon.

subroutine snopt (start, m, n, ne, nName,
$ nnCon, nnObj, nnJac,
$ iObj, ObjAdd, Prob,
$ funcon, funobj,
$ a, ha, ka, bl, bu, Names,
$ hs, xs, pi, rc,
$ inform, mincw, miniw, minrw,
$ nS, nInf, sInf, Obj,
$ cu, lencu, iu, leniu, ru, lenru,
$ cw, lencw, iw, leniw, rw, lenrw)

external funcon, funobj
character*(*) start
character*8 Prob
character*8 Names(nName)
integer m, n, ne, nName, nnCon, nnObj, nnJac
integer iObj, nS, nInf
integer inform, mincw, miniw, minrw
integer ha(ne), hs(n+m)
integer ka(n+1)
double precision ObjAdd, sInf, Obj
double precision a(ne), bl(n+m), bu(n+m)
double precision xs(n+m), pi(m), rc(n+m)

integer lencu, lencw, leniu, lenru, leniw, lenrw
character*8 cu(lencu), cw(lencw)
integer iu(leniu), iw(leniw)
double precision ru(lenru), rw(lenrw)

On entry:

start is a character string that specifies how a starting basis (and certain other items)
are to be obtained.

’Cold’ requests that the Crash procedure be used to choose an initial basis,
unless a basis file is provided via OLD BASIS, INSERT or LOAD in the
Specs file.

’Basis file’ is the same as start = ’Cold’ but is more meaningful when a basis
file is given.

’Warm’ means that a basis is already defined in hs (probably from an earlier
call).

m is m, the number of general constraints (m > 0). This is the number of rows in the
full Jacobian matrix A.

Note that A must have at least one row . If your problem has no constraints, or
only upper and lower bounds on the variables, then you must include a dummy row

12 User’s Guide for SNOPT

with sufficiently wide upper and lower bounds. See the discussion of the parameters
a(ne), ha(ne), and ka(n+1) below.

n is the number of variables, excluding slacks (n > 0). This is the number of columns
in A.

ne is the number of nonzero entries in A (including the Jacobian for any nonlinear
constraints) (ne > 0).

nName is the number of column and row names provided in the character array Names. If
nName = 1, there are no names. Generic names will be used in the printed solution.
Otherwise, nName = n + m and all names must be provided.

nnCon is m1, the number of nonlinear constraints (nnCon ≥ 0).

nnObj is n′1, the number of nonlinear objective variables (nnObj ≥ 0).

nnJac is n′′1 , the number of nonlinear Jacobian variables. If nnCon = 0, nnJac = 0. If
nnCon > 0, nnJac > 0.

iObj says which row of A is a free row containing a linear objective vector c. If there is
no such vector, iobj = 0. Otherwise, this row must come after any nonlinear rows,
so that nnCon < iObj ≤ m.

ObjAdd is a constant that will be added to the objective for printing purposes. Typically
ObjAdd = 0.0d+0.

Prob is an 8-character name for the problem. Prob is used in the printed solution and in
some routines that print basis files.)

A blank name can be assigned if required.

funcon is the name of a subroutine that calculates the vector F (x) of nonlinear constraint
functions and (optionally) its Jacobian for a specified vector x. funcon must be
declared as external in the routine that calls snopt. For a detailed description of
funcon, see §5.2.

funobj is the name of a subroutine that calculates the objective function f(x) and (option-
ally) its gradient for a specified vector x. funobj must be declared as external in
the routine that calls snopt. For a detailed description of funobj, see §5.1.

a(ne), ha(ne), ka(n+1) define the nonzero elements of the constraint matrix A (Jaco-
bian), stored column-wise. A pair of values (a(i),ha(i)) contains a Jacobian
element and its corresponding row index. The array ka(n+1) defines a set of point-
ers to the beginning of each column of A within a(*) and ha(*); i.e., a(ka(j)) is
the position in a(*) of the start of the elements of column j. It follows that the
entries of column j are held in a(ka(j):ka(j+1)-1) and their corresponding row
indices are held in ha(ka(j):ka(j+1)-1).

Note: every element of a(*) must be assigned a value in the calling program. Ele-
ments in the nonlinear part of a(*) (see the Notes below) can be any dummy value
(e.g., zero) since they are initialized by SNOPT at the first point that is feasible
with respect to the linear constraints. The linear part of a(*) must contain the
constant Jacobian elements.

If Derivative level = 2 or 3, the nonlinear part of a(*) can be used to define
any constant Jacobian elements. These elements will remain unaltered during the
solution process.

1. It is essential that ka(1) = 1 and ka(n+ 1) = ne + 1.

4. Specification of subroutine snopt 13

2. To allocate storage, SNOPT needs to know if the Jacobian is dense or sparse.
The default is dense. If this is not appropriate, define the optional parameter
“Jacobian Sparse” in the specs file, or

call snprm (’Jacobian Sparse’, 0, 0, inform, ...

before calling snopt.

3. If the problem has a nonlinear objective, the first nnObj columns of a and
ha belong to the nonlinear objective variables. Subroutine funobj deals with
these variables.

4. If the problem has nonlinear constraints, the first nnJac columns of a and ha
belong to the nonlinear Jacobian variables, and the first nnCon rows of a and
ha belong to the nonlinear constraints. Subroutine funcon deals with these
variables and constraints.

5. If nnObj > 0 and nnJac > 0, the two sets of nonlinear variables overlap. The
total number of nonlinear variables is nnL = max(nnObj, nnJac).

6. The Jacobian forms the top left corner of a and ha. If a Jacobian column j
(1 ≤ j ≤ nnJac) contains any entries a(k), ha(k) associated with nonlinear
constraints (1 ≤ ha(k) ≤ nnCon), those entries must come before any other
(linear) entries.

7. The row indices ha(k) for a column may be in any order (subject to Jacobian
entries appearing first). Subroutine funcon must define the Jacobian entries
in the same order.

8. If your problem has no constraints, or only upper and lower bounds on the
variables, then you can include a dummy “free” row with a single (zero) ele-
ment. In this case, ha(1) = 1, a(1) = 0.0 and ka is defined such that ka(1) = 1,
ka(j) = 2 for j = 2 ,3, . . . , n.

bl contains the lower bounds on the variables and slacks (x, s).

The first n entries of bl, bu, hs and xs refer to the variables x. The last m entries
refer to the slacks s.

To specify a non-existent lower bound (lj = −∞), set bl(j) ≤ −bigbnd, where
bigbnd is the Infinite Bound, whose default value is 1020.

To fix the jth variable (say xj = β, where |β| < bigbnd), set bl(j) = bu(j) = β.

To make the jth constraint an equality constraint (say sj = β, where |β| < bigbnd),
set bl(n+ j) = bu(n+ j) = β.

bu contains the upper bounds on (x, s). To specify a non-existent upper bound (uj =
∞), set bu(j) ≥ bigbnd. For the data to be meaningful, it is required that bl(j) ≤
bu(j) for all j.

Names(nName) sometimes contains names for the variables and constraints. If nName = 1,
Names are not used. The printed solution will use generic names for the columns
and row. If nName = n + m, Names(j) should contain the 8 character name of the
jth variable (j = 1, 2,. . . , n + m). If j = n+ i, the jth variable is the ith row.

hs(n+m) sometimes contains a set of initial states for each variable xs, or for each variable
and slack (x, s). See the discussion of the parameter xs.

xs(n+m) sometimes contains a set of initial values for the variables and slacks (x, s).

14 User’s Guide for SNOPT

1. If start = ’Cold’ or ’Basis file’, and a BASIS file of some sort is to be
input (an OLD BASIS file, INSERT file or LOAD file), then hs and xs need not
be set at all.

2. Otherwise, hs(1:n) must be defined for a Cold start. If nothing special is
known about the problem, or if there is no wish to provide special information,
you may set hs(j) = 0, xs(j) = 0 for all j = 1, 2, . . . , n. All variables will be
eligible for the initial basis.

Less trivially, to say that variable j will probably be equal to one of its bounds,
set hs(j) = 4 and xs(j) = bl(j) or hs(j) = 5 and xs(j) = bu(j) as appropriate.

3. For Cold starts with no basis file, a CRASH procedure is used to select an
initial basis. The initial basis matrix will be triangular (ignoring certain small
entries in each column). The values hs(j) = 0, 1, 2, 3, 4, 5 have the following
meaning:

hs(j) State of variable j during crash
0, 1, 3 Eligible for the basis. 3 is given preference
2, 4, 5 Ignored

After CRASH, columns for which hs(j) = 2 entries are made superbasic. Other
entries not selected for the basis are made nonbasic at the value x(j) if bl(j) ≤
x(j) ≤ bu(j), or at the value bl(j) or bu(j) closest to x(j).

4. For Warm starts, all of hs(1:n+m) is assumed to be set to the values 0, 1, 2 or
3 (probably from some previous call) and all of xs(1:n+m) must have values.

pi contains an estimate of the vector of Lagrange multipliers (shadow prices) for the
nonlinear constraints. The first nnCon components must be defined. They will be
used as λ in the Lagrangian function for the first major iteration. If nothing is
known about λ, set pi(i) = 0.0d+0, i = 1, 2, . . . , nnCon.

nS need not be specified for Cold starts, but should retain its value from a previous
call when a Warm start is used.

cu(lencu),iu(leniu),ru(lenru) are 8-character, integer and real arrays of user workspace.
These arrays are available to pass 8-character, integer and real data to your versions
of the routines funcon and funobj. These arrays are not touched by snopt.

If no workspace is required, you can use dummy arrays for cu, iu and ru, or use
cw, iw and rw in their place (see below).

cw(lencw),iw(leniw),rw(lenrw) are 8-character, integer and real arrays of workspace
used by snopt.

lencw must be at least 500. The bigger the values of leniw and lenrw, the better
the performance since it is not certain how much storage the basis factors need.
leniw should be about 10(m + n) or larger. lenrw should be about 20(m + n) or
larger.

If Print Level is positive, the required amounts of workspace are printed. Thus,
appropriate values may be obtained from a preliminary run with lencw = leniw =
lenrw = 500 and Print Level > 0. (The values will be printed before snopt
terminates with inform = 42, 43 or 44.)

4. Specification of subroutine snopt 15

On exit:

hs is the final state vector. The elements of hs have the following meaning:

hs(j) State of variable j Usual value of x(j)
0 nonbasic bl(j)
1 nonbasic bu(j)
2 superbasic Between bl(j) and bu(j)
3 basic ditto

Basic and superbasic variables may be outside their bounds by as much as the value
of the optional parameter Feasibility Tolerance. Note that if scaling is specified,
the Feasibility Tolerance applies to the variables of the scaled problem. In this
case, the variables of the original problem may be as much as 0.1 outside their
bounds, but this is unlikely unless the problem is very badly scaled. Check the
“Primal infeasibility” printed after the EXIT message.

Very occasionally some nonbasic variables may be outside their bounds by as much
as the Feasibility Tolerance, and there may be some nonbasics for which xs(j)
lies strictly between its bounds.

If nInf > 0, some basic and superbasic variables may be outside their bounds by
an arbitrary amount (bounded by sInf if scaling was not used).

xs(n+m) is the final variables and slacks (x, s).

pi(m) is the vector of dual variables π (a set of Lagrange multipliers for the general
constraints).

rc(n+m) is a vector of reduced costs, g−(A −I)Tπ, where g is the gradient of the objective
if xs is feasible (or the gradient of the phase-1 objective otherwise). If nInf = 0,
the last m entries are π.

inform reports the result of the call to snopt. Here is a summary of possible values:

0 Optimal solution found. (The reduced gradient is negligible, the Lagrange
multipliers are optimal, and xs satisfies the constraints to the accuracy re-
quested.

1 The problem is infeasible.

2 The problem is unbounded (or badly scaled).

3 Too many iterations.

4 Feasible solution, but requested accuracy could not be achieved.

5 The Superbasics limit is too small.

6 User requested termination by returning mode < 0 from funobj or funcon.

7 Subroutine funobj seems to be giving incorrect gradients.

8 Subroutine funcon seems to be giving incorrect gradients.

9 The current point cannot be improved.

10 Numerical error in trying to satisfy the linear constraints (or the linearized
nonlinear constraints). The basis is very ill-conditioned.

12 Basis factorization requested twice in a row. Should probably be treated as
inform = 9.

20 Not enough storage for the basis factorization.

16 User’s Guide for SNOPT

21 Error in basis package.

22 The basis is singular after several attempts to factorize it (and add slacks
where necessary).

30 An OLD BASIS file had dimensions that did not match the current problem.

32 System error. Wrong number of basic variables.

42 Not enough 8-character workspace to solve the problem.

43 Not enough integer workspace to solve the problem.

44 Not enough real workspace to solve the problem.

mincw,miniw,minrw say how much character, integer and real storage is needed to solve
the problem. If SNOPT terminates because of insufficent storage (inform = 42, 43
or 44), these values may be used to define better values of lencw, leniw or lenrw.

If inform = 42, the work array cw(lencw) was too small. snopt may be called again
with lencw suitably larger than mincw.

If inform = 43 or 44, the work arrays iw(leniw) or rw(lenrw) are too small. snopt
may be called again with leniw or lenrw suitably larger than miniw or minrw. (The
bigger the better, since it is not certain how much storage the basis factors need.)

nS is the final number of superbasics.

nInf is the number of infeasibilities.

sInf is the sum of infeasibilities.

Obj is the value of the objective function. If nInf = 0, Obj includes the quadratic
objective if any. If nInf > 0, Obj is just the linear objective if any.

5. User-Supplied Subroutines 17

5. User-Supplied Subroutines

The user must provide subroutines that define the nonlinear parts of the objective function
and nonlinear constraints. (A dummy subroutine must be provided if the objective or
constraints have no nonlinear part.) Nonlinearities in the objective function are defined by
subroutine funobj. Those in the constraints are defined separately by subroutine funcon.
On every entry except perhaps the last, these subroutines must return appropriate function
values f. Wherever possible, they should also return all gradient components in the array
g. This provides maximum reliability and corresponds to the default setting, Derivative
Level = 3.

In practice it is often convenient not to code gradients. SNOPT is able to estimate
gradients by finite differences, by making a call to funobj or funcon for each variable xj
whose partial derivatives need to be estimated. However , this reduces the reliability of the
optimization algorithms, and it can be very expensive if there are many such variables xj .

As a compromise, SNOPT allows you to code as many gradients as you like. This option
is implemented as follows: just before a function routine is called, each element of the
gradient array g is initialized to a specific value. On exit, any element retaining that value
must be estimated by finite differences.

Some rules of thumb follow:

1. For maximum simplicity and reliability, compute f and all components of g.

2. If not all gradients are known, compute as many of them as you can. (It often happens
that some of them are constant or even zero.)

3. If some gradients are known (but not all), it may be convenient to compute them each
time the function routines are called, even though they will be ignored if mode = 2.

4. If the known gradients are expensive to compute, use the parameter mode to avoid
computing them on certain entries.

5. While the function routines are being developed, use the verify parameter to check
the computation of any gradient elements that are supposedly known.

18 User’s Guide for SNOPT

5.1. Subroutine funobj

This subroutine must calculate the objective function f(x) and (optionally) the gradient
g(x). The specification of funobj is

subroutine funobj(mode, nnObj,
$ x, fObj, gObj, nState,
$ cu, lencu, iu, leniu, ru, lenru)
integer mode, nnObj, nState
real fObj
real x(nnObj), gObj(nnObj)

integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)
real ru(lenru)

On entry:

mode is set by snopt to indicate which values are to be assigned during the call of funobj
(0 ≤ mode ≤ 2).

This parameter can be ignored if the (default) derivative linesearch is selected, and
if Derivative level is 1 or 3 (i.e., if all elements of gObj are are specified by the
user). In this case, mode will always have the value 2.

If some derivatives are unspecified, snopt will call funobj with mode = 0, 1 or 2.
You may test mode to decide what to do:

• If mode = 2, assign fObj and the known components of gObj.

• If mode = 1, assign all available components of gObj; fObj is not required and
is ignored.

• If mode = 0, only fObj needs to be assigned; gObj is ignored.

nnObj is the number of variables involved in f , i.e., the number of nonlinear objective
variables (> 0). These must be the first nnObj variables in the problem.

x is an array of dimension at least nnObj containing the values of the variables x for
which f must be evaluated.

nState allows you to save computation time if certain data must be read or calculated only
once.

If nState = 0, there is nothing special about the current call to funobj.

If nState = 1, SNOPT is calling your subroutine for the first time. Some data may
need to be input or computed and saved in local or common storage. Note that if
there are nonlinear constraints, the first call to funcon will occur before the first
call to funobj.

If nState ≥ 2, SNOPT is calling your subroutine for the last time. You may wish
to perform some additional computation on the final solution. Note again that if
there are nonlinear constraints, the last call to funcon will occur before the last call
to funobj.

In general, the last call is made with nState = 2 + ierr, where ierr indicates the
status of the final solution. In particular, if nState = 2, the current x is optimal ;

5. User-Supplied Subroutines 19

if nState = 3, the problem appears to be infeasible; if nState = 4, the problem
appears to be unbounded; and if nState = 5, the iterations limit was reached. In
some cases, the solution may be nearly optimal if nState = 11; this value occurs if
the line search procedure was unable to find an improved point.

If the nonlinear functions are expensive to evaluate, it may be desirable to do
nothing on the last call, by including a statement of the form

if (nState .ge. 2) return

at the start of the subroutine.

cu(lencu), iu(leniu), ru(lenru) are character, integer and real arrays that can be
used to pass user-defined auxiliary information into funobj. The arrays cu,iu and
ru are not touched by snopt and can be used to retain information between calls
of funobj.

In certain applications, the objective may depend on the values of certain internal
SNOPT variables stored in the arrays cw, iw and rw. In this case, cw, iw and rw
can be made accessible to funobj by calling sqopt with cw, iw and rw used for the
arguments cu, iu and ru. Once this is done, various values of iw can be used to
pinpoint the required locations of snopt arrays. For example, the dual variables
are stored in rw(lpi) onward, where the address lpi is the value of iw(257). If
you still require user work space, elements 501:maxcu, 501:maxru and 501:maxiu
of cw, rw and iw are set aside for this purpose. (See the definition of the optional
parameters User real workspace and User integer workspace in §7.3.

If you do not require workspace to be passed into funobj, the snopt work arrays
cw, iw and rw can be used for cu, iu and ru.

On exit:

mode can be used to indicate that you are unable or unwilling to evaluate the objective
function at the current x.

During the line search, f is evaluated at points x of the form x = xk +αpk, where
f already has been evaluated satisfactorily at xk. At any such α, it you set mode
to −1 SNOPT will evaluate f at some point closer to xk (a point at which f is
more likely to be defined.

If for some reason you wish to terminate solution of the current problem, set mode
to a negative value (other than −1).

fObj must contain the computed value of f(x).

gObj(nnObj) must contain the assigned components of the gradient vector g(x), i.e., gObj(j)
contains the partial derivative ∂f/∂xj (except perhaps if mode = 0—see above).

20 User’s Guide for SNOPT

5.2. Subroutine funcon

This subroutine must compute the nonlinear constraint functions F (x) and (optionally) their
gradients. (A dummy subroutine funcon must be provided if all constraints are linear.) The
gradients of the vector F (x) define the Jacobian matrix A1(x). The jth column of A1(x) is
the vector ∂F/∂xj .

Subroutine funcon may be coded in two different ways, depending on the method used
for storing the Jacobian, as specified in the SPECS file. For the option

Jacobian = dense

the specification of funcon is

subroutine funcon(mode, nnCon, nnJac, neJac,
$ x, fCon, gCon, nState,
$ cu, lencu, iu, leniu, ru, lenru)
integer mode, nnCon, nnJac, neJac, nState
real x(nnJac), fCon(nnCon), gCon(nnCon,nnJac)

integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)
real ru(lenru)

On entry:

mode This parameter can be ignored if Derivative linesearch is selected (the default),
and if Derivative level = 2 or 3 (i.e., if all elements of gCon are computed). In
this case, mode will always have the value 2.

Otherwise, you must specify Derivative level = 0 or 1 in the SPECS file to
indicate that funcon will not compute all of gCon. You may then test mode in
funcon to decide what to do:

• If mode = 2, compute fCon and as many components of gCon as possible.

• If mode = 0, compute fCon but set gCon only if you wish. (On return, the
contents of gCon will be ignored.)

nnCon is the number of nonlinear constraints (nnCon > 0). These must be the first nnCon
constraints in the problem.

nnJac is the number of variables involved in F (x) (0 < nnJac ≤ n). These must be the
first nnJac variables in the problem.

neJac is the value nnCon*nnJac.

x(nnJac) contains the current values of the nonlinear variables x.

On exit:

fCon(nnCon) contains the computed values of the functions in the constraint vector F (x).

gCon(nnCon,nnJac) contains the computed Jacobian J(x). The jth column of J(x) should
be stored in the jth column of the 2-dimensional array gCon (except perhaps if
mode = 0—see above). Equivalently, the gradient of the ith constraint should be
stored in the ith row of gCon.

5. User-Supplied Subroutines 21

The other parameters are the same as for subroutine funobj.

22 User’s Guide for SNOPT

If the option
Jacobian = Sparse

is selected, the specification of funcon is as follows.

subroutine funcon(mode, nnCon, nnJac, neJac,
$ x, fCon, gCon, nState,
$ cu, lencu, iu, leniu, ru, lenru)
integer mode, nnCon, nnJac, neJac, nState
real x(nnJac), fCon(nnCon), gCon(neJac)

integer lencu, leniu, lenru
character*8 cu(lencu)
integer iu(leniu)
real ru(lenru)

This is the same as for Jacobian = Dense, except for the declaration of gCon(neJac).

On entry:

neJac is the number of nonzero elements in the constraint Jacobian J(x) (> 0).

Usually neJac will be less than nnCon*nnJac. The actual value of neJac may not
be of any use when coding funcon, but in all cases, any expression involving gCon(l)
should have the subscript l between 1 and neJac.

On exit:

gCon(neJac) contains the computed elements of the Jacobian (except perhaps if mode = 0—
see previous page). These elements must be stored into gCon in exactly the same
positions as implied by the definitions of the arrays a, ha and ka. There is no internal
check for consistency (except indirectly via the Verify parameter), so great care is
essential.

The other parameters are the same as for Jacobian = dense.

5.3. Constant Jacobian elements

If all constraint gradients (Jacobian elements) are known (Derivative level = 2 or 3),
any constant elements may be assigned to the array a if desired. An element of gCon that is
not computed in funcon will retain the value implied by its value in a. (The value is taken
to be zero if not given explicitly in a.)

This feature is useful when Jacobian = Dense and many Jacobian elements are identi-
cally zero. Such elements need not be set in funcon.

Note that constant nonzero elements do affect fCon. Thus, if Jij is assigned in a
and is constant, the array element gCon(i,j) need not be set in funcon, but the value
gCon(i,j)*x(j) must be added to fCon(i).

When Jacobian = Sparse, constant Jacobian elements will normally not be listed in
a unless they are nonzero. If the correct value is entered in a, the corresponding element
gCon(l) need not be reassigned, but an appropriate linear term of the form gCon(l)*x(j)
must be added to one of the elements of fCon.

Remember, if Derivative level < 2, unassigned elements of gCon are not treated as
constant; they are estimated by finite differences, at significant expense.

5. User-Supplied Subroutines 23

5.4. Example

Here we give the subroutines funobj and funcon for the four dimensional example of Sec-
tion 3, repeated here for convenience.

minimize (x1 + x2 + x3)2 + 3x3 + 5x4

subject to x2
1 + x2

2 + x3 = 2
x4

1 + x4
2 + x4 = 4

2x1 + 4x2 ≥ 0
x3 ≥ 0 x4 ≥ 0.

This problem has 4 variables, 3 nonlinear objective variables, 2 nonlinear Jacobian variables,
2 nonlinear constraints and 1 linear constraint. This implies that the calling program must
include the statements

n = 4
m = 4
nnCon = 2
nnJac = 2
nnObj = 3

The subroutine funobj involves only the nonlinear objective variables, which in this case
are the variables x1, x2, and x3.

subroutine funobj(mode, nnObj,

$ x, fObj, gObj, nState,

$ cu, lencu, iu, leniu, ru, lenru)

real x(nnObj), gObj(nnObj)

integer lencu, leniu, lenru

character*8 cu(lencu)

integer iu(leniu)

real ru(lenru)

* ==

* Toy NLP problem from the SNOPT User’s Guide

* ==

sum = x(1) + x(2) + x(3)

fObj = sum*sum

sum = 2.0d+0*sum

gObj(1) = sum

gObj(2) = sum

gObj(3) = sum

* end of funobj for toy NLP.

end

The subroutine funobj involves the variable x3 that occurs only linearly in the constraints.
In such cases we recommend that the objective variables be placed after the Jacobian
variables in the in the arrays a, ha, ka.

subroutine funcon(mode, nnCon, nnJac, neJac,

$ x, fCon, gCon, nState,

$ cu, lencu, iu, leniu, ru, lenru)

24 User’s Guide for SNOPT

real x(nnJac), fCon(nnCon), gCon(nnCon,nnJac)

integer lencu, leniu, lenru

character*8 cu(lencu)

integer iu(leniu)

real ru(lenru)

* ==

* Toy NLP problem from the SNOPT User’s Guide

* Jacobian = DENSE

* ==

fCon(1) = x(1)**2 + x(2)**2

fCon(2) = x(1)**4 + x(2)**4

* Nonlinear Jacobian elements for column 1.

* rows = (1,2).

gCon(1,1) = 2.0d+0*x(1)

gCon(2,1) = 4.0d+0*x(1)**3

* Nonlinear Jacobian elements for column 2.

* Rows = (1,2).

gCon(1,2) = 2.0d+0*x(2)

gCon(2,2) = 4.0d+0*x(2)**3

* end of funcon for toy NLP.

end

6. The SPECS File 25

6. The SPECS File

The performance of SNOPT is controlled by a number of parameters or “options”. Each
option has a default value that should be appropriate for most problems. (The defaults are
given in the next section.) For special situations it is possible to specify non-standard values
for some or all of the options, using data in the following general form:

Begin SNOPT options
Iterations limit 500
Minor feasibility tolerance 1.0e-7
Scale all variables

End SNOPT options

We shall call such data a SPECS file, since it specifies various options. The file starts with
the keyword Begin and ends with End. The file is in free format. Each line specifies a single
option, using one or more items as follows:

1. A keyword (required for all options).

2. A phrase (one or more words) that qualifies the keyword (only for some options).

3. A number that specifies an integer or real value (only for some options). Such numbers
may be up to 16 contiguous characters in Fortran 77’s I, F, E or D formats, terminated
by a space.

The items may be entered in upper or lower case or a mixture of both. Some of the keywords
have synonyms, and certain abbreviations are allowed, as long as there is no ambiguity.
Blank lines and comments may be used to improve readability. A comment begins with an
asterisk (*), which may appear anywhere on a line. All subsequent characters on the line
are ignored.

Although most options take default values, some of them must be specified; for example,
the number of nonlinear variables if there are any.

It may be useful to include a comment on the first (Begin) line of the file. This line is
echoed to the SUMMARY file, and appears on the screen in an interactive environment.

Most of the options described in the next section should be left at their default values for
any given model. If experimentation is necessary, we recommend changing just one option
at a time.

7. SPECS File Checklist and Defaults

The following example SPECS file shows all valid keywords and their default values. The
keywords are grouped according to the function they perform.

Some of the default values depend on ε, the relative precision of the machine being used.
The values given here correspond to double-precision arithmetic on most current machines
(ε ≈ 2.22 × 10−16). Similar values would apply to any machine having about 15 decimal
digits of precision.

BEGIN checklist of SPECS file parameters and their default values

* Printing

Major print level 1 * summary line each major iteration
Minor print level 0 * summary line each minor iteration
Summary frequency 1 * iteration log on SUMMARY file
Print frequency 1 * iteration log on PRINT file
Solution Yes * on the PRINT file
*Suppress options listing * Options listed by default

26 User’s Guide for SNOPT

* Problem dimensions
Nonlinear objective variables 0 * use if different from Jacobian variables
Nonlinear constraints 0 * must be the exact number, m1

Nonlinear variables 0 * must be the exact number, n1

Nonlinear Jacobian variables 0 * use if different from objective variables

* Convergence Tolerances

Minor feasibility tolerance 1.0e-6 * for satisfying the QP bounds
Minor optimality tolerance 1.0e-6 * target value for reduced gradients
Major feasibility tolerance 1.0e-6 * target nonlinear constraint violation
Major optimality tolerance 1.0e-6 * target complementarity gap

* Derivative checking

Verify level 0 * gives cheap check on gradients
Start objective check at col 1 *

Stop objective check at col n1 *

Start constraint check at col 1 *

Stop constraint check at col n1 *

* Scaling

Scale option 1 * linear constraints and variables
Scale tolerance 0.9 *

* Other Tolerances
Crash tolerance 0.1 *

Linesearch tolerance 0.9 * smaller for more accurate search
LU factor tolerance 10.0 * limits size of multipliers in L
LU update tolerance 10.0 * the same during updates
LU singularity tolerance 2.0e-6 *

Pivot tolerance 3.7e-11 * ε
2
3

* QP subproblems

Crash option 0 * All slack initial basis
Elastic weight 100 * used only during elastic mode
Iterations limit 300 * or 3*Rows + 10*Nonlinear variables

Partial price 1 * or Cols/(2*Rows) if Cols is large

* SQP method

Minimize * (opposite of Maximize)
Feasible point not set * (alternative to Max or min)
Feasible Exit not set * (get feasible before exiting)
Jacobian Dense *

Major iterations limit 40 *

Minor iterations limit 40 *

Major step limit 2.0 *

Superbasics limit 50 *

Reduced Hessian dimension 50 * or Superbasics limit

Derivative linesearch Yes *

Function precision 3.0e-13 * ε0.8 (almost full accuracy)

Difference interval 5.5e-7 * (Function precision)
1
2

Central difference interval 6.7e-5 * (Function precision)
1
3

Derivative level 3 * assumes all gradients are known
Violation limit 10.0 * unscaled constraint violation limit
Unbounded step size 1.0e+18 *

Unbounded objective 1.0e+15 *

* Hessian approximation

7. SPECS File Checklist and Defaults 27

Hessian limited memory * default if n > 75
Hessian full memory * default if n ≤ 75
Hessian updates 20 * ignored if Hessian is full
Hessian flush 999999 * no flushing

* Frequencies

Factorization frequency 50 *

Expand frequency 10000 *

Hessian frequency 999999 * never reset the Hessian
Check frequency 60 * numerical test on row residuals
Factorization frequency 100 * refactorize the basis matrix
Save frequency 100 * basis map
Save new basis map 100 *

* BASIS files
OLD BASIS file 0 * input basis map
NEW BASIS file 0 * output basis map
BACKUP BASIS file 0 * output basis map
INSERT file 0 * input in industry format
PUNCH file 0 * output INSERT data
LOAD file 0 * input names and values
DUMP file 0 * output LOAD data
SOLUTION file 0 * separate from printed solution

* Miscellaneous
Total character workspace ? * depends on the installation
Total integer workspace ? * depends on the installation
Total real workspace ? * depends on the installation

End of SPECS file checklist

7.1. Subroutine snInit (to read a Specs file)

Subroutine snInit is provided with SNOPT to initialize the default parameters and read
options from an external Specs file (if any). snInit MUST be called before the first call of
SNOPT .

Specification:

subroutine snInit(iSpecs, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
integer iSpecs, iPrint, iSumm, inform
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)
real rw(lenrw)

On entry:

iSpecs says whether or not a SPECS file exists. If iSpecs > 0, a file is read from the
specified Fortran file number. Typically iSpecs = 4.

iPrint says if a PRINT file is to be created. Typically iPrint = 9.

iSumm says if a SUMMARY file is to be created. Typically iSumm = 6. In an interactive
environment, this value usually denotes the screen.

The remaining parameters have the same function as those of SNOPT.

28 User’s Guide for SNOPT

On exit:

All input parameters are unchanged except inform, which is defined as follows.
inform is 0 if there was no SPECS file, or if the SPECS file was successfully read. Otherwise,

it returns the number of errors encountered.

7. SPECS File Checklist and Defaults 29

7.2. Subroutines snprm, snprmi, snprmr (to define a single option)

These subroutines may be called from the program that calls snopt. They specify a single
option that might otherwise be defined in one line of a SPECS file.

Specification:

subroutine snprm (buffer, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
subroutine snprmi(buffer, ivalue, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
subroutine snprmr(buffer, rvalue, iPrint, iSumm, inform,
$ cw, lencw, iw, leniw, rw, lenrw)
character*(*) buffer
integer ivalue
real rvalue
integer iPrint, iSumm, inform
integer lencw, leniw, lenrw
character*8 cw(lencw)
integer iw(leniw)
real rw(lenrw)

On entry:

buffer is a string to be decoded as if it were a line of a SPECS file. For snprm, the maximum
length of buffer is 72 characters. Use snprm if the string contains all of the data
associated with a particular keyword. For example,

call snprm (’Iterations 1000’, iPrint, iSumm, inform, ...

is suitable if the value 1000 is known at compile time.

For snprmi and snprmr the maximum length of buffer is 55 characters.

ivalue is an integer value associated with the keyword in buffer. Use snprmi if it is
convenient to define the value at run time. For example,

itnlim = 1000
if (m .gt. 500) itnlim = 8000
call snprmi(’Iterations’, itnlim, iPrint, iSumm, inform, ...

allows the iteration limit to be computed.

rvalue is a floating-point value associated with the keyword in buffer. Use snprmr if it is
convenient to define the value at run time. For example,

factol = 100.0d+0
if (illcon) factol = 5.0d+0
call snprmr(’LU factor tol’, factol, iPrint, iSumm, inform, ...

allows the LU stability tolerance to be computed.

iPrint is a file number for printing each line of data, along with any error messages. iPrint
= 0 suppresses this output.

iSumm is a file number for printing any error messages. iSumm = 0 suppresses this output.

inform should be 0.

30 User’s Guide for SNOPT

On exit:

inform is the number of errors encountered so far.

7. SPECS File Checklist and Defaults 31

7.3. Description of the optional parameters

The following is an alphabetical list of the options that may appear in the SPECS file, and
a description of their effect.

Backup Basis file i Default = 0

This is intended as a safeguard against losing the results of a long run. Suppose that a
NEW BASIS file is being saved every 100 iterations, and that SNOPT is about to save such
a basis at iteration 2000. It is conceivable that the run may time-out during the next few
milliseconds (i.e., in the middle of the save), or the host computer could unexpectedly crash.
In this case the basis file will be corrupted and the run will have been essentially wasted.

To eliminate this risk, both a NEW BASIS file and a BACKUP BASIS file may be specified.
The following would be suitable for the above example:

OLD BASIS file 11 (or 0)
BACKUP BASIS file 11
NEW BASIS file 12
Save frequency 100

The current basis will then be saved every 100 iterations, first on file 12 and then immediately
on file 11. If the run is interrupted at iteration 2000 during the save on file 12, there will
still be a useable basis on file 11 (corresponding to iteration 1900).

Note that a NEW BASIS will be saved at the end of a run if it terminates normally, but
there is no need for a further BACKUP BASIS. In the above example, if an optimum solution
is found at iteration 2050 (or if the iteration limit is 2050), the final basis on file 12 will
correspond to iteration 2050, but the last basis saved on file 11 will be the one for iteration
2000.

Central difference interval r Default = ε
1
3

When Derivative level < 3, the central-difference interval r is used near an optimal
solution to obtain more accurate (but more expensive) estimates of gradients. Twice as
many function evaluations are required compared to forward differencing. The interval used
for the jth variable is hj = r(1 + |xj |). The resulting gradient estimates should be accurate
to O(r2), unless the functions are badly scaled.

Check frequency i Default = 60

Every ith minor iteration after the most recent basis factorization, a numerical test is made
to see if the current solution x satisfies the general linear constraints (including linearized
nonlinear constraints, if any). The constraints are of the form Ax − s = b, where s is the
set of slack variables. To perform the numerical test, the residual vector r = b − Ax + s
is computed. If the largest component of r is judged to be too large, the current basis is
refactorized and the basic variables are recomputed to satisfy the general constraints more
accurately.

Check frequency 1 is useful for debugging purposes, but otherwise this option should
not be needed.

Crash option i Default = 0
Crash tolerance r Default = 0.1

Except on restarts, a CRASH procedure is used to select an initial basis from certain rows
and columns of the constraint matrix (A − I). The Crash option i determines which

32 User’s Guide for SNOPT

rows and columns of A are eligible initially, and how many times CRASH is called. Columns
of −I are used to pad the basis where necessary.

i Meaning

0 The initial basis contains only slack variables: B = I.

1 CRASH is called once, looking for a triangular basis in all rows and columns of the
matrix A.

2 CRASH is called twice (if there are nonlinear constraints). The first call looks for a
triangular basis in linear rows, and the iteration proceeds with simplex iterations until
the linear constraints are satisfied. The Jacobian is then evaluated for the first major
iteration and CRASH is called again to find a triangular basis in the nonlinear rows
(retaining the current basis for linear rows).

3 CRASH is called up to three times (if there are nonlinear constraints). The first two
calls treat linear equalities and linear inequalities separately. As before, the last call
treats nonlinear rows before the first major iteration.

If i ≥ 1, certain slacks on inequality rows are selected for the basis first. (If i ≥ 2,
numerical values are used to exclude slacks that are close to a bound.) CRASH then makes
several passes through the columns of A, searching for a basis matrix that is essentially
triangular. A column is assigned to “pivot” on a particular row if the column contains
a suitably large element in a row that has not yet been assigned. (The pivot elements
ultimately form the diagonals of the triangular basis.) For remaining unassigned rows, slack
variables are inserted to complete the basis.

The Crash tolerance r allows the starting procedure CRASH to ignore certain “small”
nonzeros in each column of A. If amax is the largest element in column j, other nonzeros aij
in the column are ignored if |aij | ≤ amax × r. (To be meaningful, r should be in the range
0 ≤ r < 1.)

When r > 0.0, the basis obtained by CRASH may not be strictly triangular, but it is
likely to be nonsingular and almost triangular. The intention is to obtain a starting basis
containing more columns of A and fewer (arbitrary) slacks. A feasible solution may be
reached sooner on some problems.

For example, suppose the first m columns of A are the matrix shown under LU factor
tolerance; i.e., a tridiagonal matrix with entries −1, 4, −1. To help CRASH choose all m
columns for the initial basis, we would specify Crash tolerance r for some value of r > 1/4.

Derivative Level i Default = 3

This specifies which nonlinear function gradients are known analytically and will be supplied
to SNOPT by the user subroutines funobj and funcon.

i Meaning

3 All objective and constraint gradients are known.

2 All constraint gradients are known, but some or all components of the objective gra-
dient are unknown.

1 The objective gradient is known, but some or all of the constraint gradients are un-
known.

7. SPECS File Checklist and Defaults 33

0 Some components of the objective gradient are unknown and some of the constraint
gradients are unknown.

The value i = 3 should be used whenever possible. It is the most reliable and will usually
be the most efficient.

If i = 0 or 2, SNOPT will estimate the missing components of the objective gradient,
using finite differences. This may simplify the coding of subroutine funobj. However, it
could increase the total run-time substantially (since a special call to funobj is required
for each missing element), and there is less assurance that an acceptable solution will be
located. If the nonlinear variables are not well scaled, it may be necessary to specify a
nonstandard Difference interval (see below).

If i = 0 or 1, SNOPT will estimate missing elements of the Jacobian. For each column of
the Jacobian, one call to funcon is needed to estimate all missing elements in that column,
if any. If Jacobian = sparse and the sparsity pattern of the Jacobian happens to be

* * *
? ?

* ?
* *

where * indicates known gradients and ? indicates unknown elements, SNOPT will use one
call to funcon to estimate the missing element in column 2, and another call to estimate
both missing elements in column 3. No calls are needed for columns 1 and 4.

At times, central differences are used rather than forward differences. Twice as many
calls to funobj and funcon are then needed. (This is not under the user’s control.)

Remember: when analytic derivatives are not provided, the attainable accuracy in locat-
ing an optimal solution is usually less than when all gradients are available. Derivative level =
3 is strongly recommended.

Derivative linesearch Default
Nonderivative linesearch
No derivative linesearch

At each major iteration a linesearch is used to improve the merit function. A Derivative
linesearch uses safeguarded cubic interpolation and requires both function and gradient
to compute estimates of the step αk. If some analytic derivatives are not provided, or a
Nonderivative linesearch is specified, SNOPT employs a linesearch based upon a safe-
guarded quadratic interpolation, which does not require the evaluation of the gradients or
their approximations.

A nonderivative linesearch can be slightly less robust on difficult problems, and it is
recommended that the default be used if the functions and derivatives can be computed at
approximately the same cost. If the gradients are very expensive relative to the functions,
a nonderivative linesearch may give a significant decrease in computation time.

If the Nonderivative linesearch is selected, SNOPT signals the evaluation of the line-
search by calling the user-defined routines funobj and funcon with mode = 0. Once the
linesearch is completed, the problem functions are called again with mode = 2. If the po-
tential savings provided by a nonderivative linesearch are to be realized, it is essential that
funobj and funcon be coded so that the derivatives are not computed when mode = 0.

Difference Interval h1 Default = ε1/2

This alters the interval h1 that is used to estimate gradients by forward differences in the
following circumstances:

34 User’s Guide for SNOPT

• In the initial (“cheap”) phase of verifying the objective gradients.

• For verifying the constraint gradients.

• For estimating missing objective gradients.

• For estimating missing Jacobian elements.

In the last three cases, a derivative with respect to xj is estimated by perturbing that com-
ponent of x to the value xj+h1(1+ |xj |), and then evaluating F (x) or f(x) at the perturbed
point. The resulting gradient estimates should be accurate to O(h1) unless the functions
are badly scaled. Judicious alteration of h1 may sometimes lead to greater accuracy.

Dump File i Default = 0

If i > 0, the last solution obtained will be output to the file with unit number i in the format
described in Section 9.3. The file will usually have been output previously as a LOAD file.

Elastic weight r Default = 0.0

This keyword invokes the so-called composite objective technique, if the first solution ob-
tained is infeasible, and if linear terms for the objective function are specified in the MPS
file. While trying to reduce the sum of infeasibilities, the method also attempts to optimize
the linear objective.

• At each infeasible iteration, the objective function is defined to be

minimize σcTx+ r(sum of infeasibilities),

where σ = 1 for Minimize, σ = −1 for Maximize, and c is the linear objective row.

• If an “optimal” solution is reached while still infeasible, r is increased by a factor of
10. This helps to allow for the possibility that the initial r is too large. It also provides
dynamic allowance for the fact the sum of infeasibilities is tending towards zero.

• The effect of r is disabled if a feasible solution is obtained.

Expand frequency i Default = 10000

This option is part of an anti-cycling procedure designed to make progress even on highly
degenerate problems. ∗

For linear models, the strategy is to force a positive step at every iteration, at the
expense of violating the bounds on the variables by a small amount. Suppose that the
Minor feasibility tolerance is δ. Over a period of i iterations, the tolerance actually
used by SNOPT increases from 0.5δ to δ (in steps of 0.5δ/i).

For nonlinear models, the same procedure is used for iterations in which there is only
one superbasic variable. (Cycling can occur only when the current solution is at a vertex
of the feasible region.) Thus, zero steps are allowed if there is more than one superbasic
variable, but otherwise positive steps are enforced.

∗The EXPAND procedure is described in “A practical anti-cycling procedure for linearly constrained
optimization”, P. E. Gill, W. Murray, M. A. Saunders and M. H. Wright, Mathematical Programming 45
(1989), pp. 437–474.

7. SPECS File Checklist and Defaults 35

Increasing i helps reduce the number of slightly infeasible nonbasic basic variables (most
of which are eliminated during a resetting procedure). However, it also diminishes the
freedom to choose a large pivot element (see Pivot tolerance).

Factorization Frequency k Default = 50

At most k basis changes will occur between factorizations of the basis matrix.

• With linear programs, the basis factors are usually updated every iteration. The
default k is reasonable for typical problems. Higher values up to k = 100 (say) may
be more efficient on problems that are extremely sparse and well scaled.

• When the objective function is nonlinear, fewer basis updates will occur as an optimum
is approached. The number of iterations between basis factorizations will therefore
increase. During these iterations a test is made regularly (according to the Check
frequency) to ensure that the general constraints are satisfied. If necessary the basis
will be refactorized before the limit of k updates is reached.

• When the constraints are nonlinear, the Minor iterations limit will probably pre-
empt k.

Feasibility tolerance t Default = 1.0E-6
see Minor feasibility tolerance

Feasible point

Find a feasible point for the nonlinear constraints (the objective is ignored). This option
can be used to check that the nonlinear constraints are feasible.

Feasible exit
Infeasible exit ok Default

This option requests that SNOPT terminates with a point that is feasible for the nonlinear
constraints. If SNOPT terminates abnormally, additional iterations are made to get feasible
with respect to the nonlinear constraints. This option is ignored if the maximum number
of iterations is exceeded, or the linear constraints are infeasible.

Function Precision εR Default = ε0.8

The relative function precision εR is intended to be a measure of the relative accuracy
with which the nonlinear functions can be computed. For example, if f(x) is computed as
1000.56789 for some relevant x and if the first 6 significant digits are known to be correct,
the appropriate value for εR would be 1.0E-6.

(Ideally the functions f(x) or F i(x) should have magnitude of order 1. If all functions
are substantially less than 1 in magnitude, εR should be the absolute precision. For example,
if f(x) = 1.23456789E-4 at some point and if the first 6 significant digits are known to be
correct, the appropriate value for εR would be 1.0E-10.)

• The default value of εR is appropriate for simple analytic functions.

36 User’s Guide for SNOPT

• In some cases the function values will be the result of extensive computation, possibly
involving an iterative procedure that can provide rather few digits of precision at
reasonable cost. Specifying an appropriate Function precision may lead to savings,
by allowing the linesearch procedure to terminate when the difference between function
values along the search direction becomes as small as the absolute error in the values.

Hessian limited memory
Hessian full memory Default if max{n′1, n′′1} < 75

These options specify the form of the quasi-Newton approximation to the Hessian of the
Lagrangian.

If Hessian Full memory is specified, the approximate Hessian is treated as a dense
matrix and apply the BFGS quasi-Newton updates are applied explicitly. This option is
most efficient when the number of nonlinear variables n̄ is not too large (say, less than 75).
In this case, the storage requirement is fixed, and the user can expect 1-step Q-superlinear
convergence to the solution.

Hessian limited memory should be used on problems where the number of nonlinear
variables n̄ is very large. In this case a limited-memory procedure is used to update an
initial Hessian approximation Hr a limited number of times.

Hessian updates i Default = 20

If Hessian limited memory is selected, this option defines the maximum number of pairs
of Hessian update vectors that are used to define the quasi-Newton approximate Hessian.
Once the Hessian update limit is attained, the accumulated updates are discarded and the
process starts again.

Broadly speaking, the more updates stored, the better the quality of the approximate
Hessian. However, the more vectors stored, the greater the cost of each QP iteration. The
default value is likely to give a robust algorithm without significant expense, but faster
converged can be obtained with far fewer updates (e.g., i = 5).

Hessian frequency i Default = 20

This option forces the approximate Hessian to be reset to a diagonal every i successful up-
dates. if Hessian frequency = 20 is used with Hessian full memory, the have a similar
effect to Hessian limited memory with Hessian updates = 20.

Insert File f Default = 0

If f > 0, this references a file containing basis information in the format of Section 9.2.

• The file will usually have been output previously as a PUNCH file.

• The file will not be accessed if an OLD BASIS file is specified.

Invert Frequency k Default = 50
see Factorization Frequency

Iterations Limit k Default = 3 ∗ rows + 10 ∗ Nonlinear Vars

This is the maximum number of minor iterations allowed (i.e., iterations of the simplex
method or the QP algorithm).

7. SPECS File Checklist and Defaults 37

• Itns is an alternative keyword.

• k = 0 is valid. Both feasibility and optimality are checked.

Infinite Bound Size r Default = 1.0E+20

If r > 0, r defines the “infinite” bound BigBnd in the definition of the problem constraints.
Any upper bound greater than or equal to BigBnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to −BigBnd). If r ≤ 0, the default value is
used.

Jacobian Dense Default
Jacobian Sparse

This determines the manner in which the constraint gradients are evaluated and stored. It
affects the snopt array arguments a, ha and ka, and the subroutine funcon.

• The Dense option is convenient if there are not many nonlinear constraints or variables.
It requires storage for three dense matrices of order m1 × n1.

• For efficiency, the Sparse option is preferable in all nontrivial cases. (Beware – it
must be specifically requested .) The snopt arrays a, ha and ka must then include all
Jacobian elements (that are not identically zero), and subroutine funcon must store
the elements of the Jacobian array gCon in exactly the same order.

• In both cases, if Derivative Level = 2 or 3 the arrays a, ha and ka may specify
Jacobian elements that are constant for all values of the nonlinear variables. The
corresponding elements of gCon need not be reset in funcon.

Linesearch tolerance t Default = 0.9

This controls the accuracy with which a steplength will be located along the direction of
search each iteration. At the start of each linesearch a target directional derivative for the
merit function is identified. This parameter determines the accuracy to which this target
value is approximated.

• t must be a real value in the range 0.0 ≤ t ≤ 1.0.

• The default value t = 0.1 requests a moderately accurate search. It should be satis-
factory for many problems.

• If the nonlinear functions are cheap to evaluate, a more accurate search may be ap-
propriate; try t = 0.01 or t = 0.001. The number of iterations should decrease, and
this will reduce total run time if there are many linear or nonlinear constraints.

• If the nonlinear functions are expensive to evaluate, a less accurate search may be
appropriate. If all gradients are known, try t = 0.5 or perhaps t = 0.9. (The number
of iterations will probably increase, but the total number of function evaluations may
decrease enough to compensate.)

• If not all gradients are known, a reasonably accurate search remains appropriate. Each
search will require only 2–5 function values (typically), but many function calls will
then be needed to estimate missing gradients for the next iteration.

38 User’s Guide for SNOPT

Load File f Default = 0

If f > 0, this references a file containing basis information in the format of Section 9.3.

• The file will usually have been output previously as a DUMP file.

• The file will not be accessed if an OLD BASIS file or an INSERT file is specified.

Log Frequency k Default = 1
see Print Frequency

LU factor tolerance r1 Default = 100.0
LU update tolerance r2 Default = 10.0

These tolerances affect the stability and sparsity of the basis factorization B = LU during
refactorization and updating, respectively. They must satisfy r1, r2 ≥ 1.0. The matrix L is
a product of matrices of the form (

1
µ 1

)
,

where the multipliers µ satisfy |µ| ≤ ri. Smaller values of ri favor stability, while larger
values favor sparsity. The default values usually strike a good compromise.

• For large and relatively dense problems, r1 = 10.0 or 5.0 (say) may give a useful
improvement in stability without impairing sparsity to a serious degree.

• For certain very regular structures (e.g., band matrices) it may be necessary to reduce
r1 and/or r2 in order to achieve stability. For example, if the columns of A include a
submatrix of the form

4 −1
−1 4 −1

−1 4 −1
.

−1 4 −1
−1 4

,

one should set both r1 and r2 to values in the range 1.0 ≤ ri < 4.0.

LU singularity tolerance r3 Default = ε2/3

This tolerance should satisfy r3 ≤ ε1/4 ≈ 10−4. It helps guard against ill-conditioned basis
matrices. When the LU factors of B are computed directly (not updated), the diagonal
elements of U are tested as follows: if |Ujj | ≤ r3 or |Ujj | < r3 maxi |Uij |, the j-th column of
the basis is replaced by the corresponding slack variable. (Replacements are rare because the
LU updating method is stable. They are most likely to occur during the first factorization.)

LU density tolerance r1 Default = 0.6
LU singularity tolerance r2 Default = ε2/3 ≈ 10−11

The density tolerance r1 is used during LU factorization of the basis matrix. Columns of L
and rows of U are formed one at a time, and the remaining rows and columns of the basis

7. SPECS File Checklist and Defaults 39

are altered appropriately. At any stage, if the density of the remaining matrix exceeds r1,
the Markowitz strategy for choosing pivots is altered to reduce the time spent searching for
each remaining pivot. Raising the density tolerance towards 1.0 may give slightly sparser
LU factors, with a slight increase in factorization time.

The singularity tolerance r2 helps guard against ill-conditioned basis matrices. When
the basis is refactorized, the diagonal elements of U are tested as follows: if |Ujj | ≤ r2 or
|Ujj | < r2 maxi |Uij |, the jth column of the basis is replaced by the corresponding slack
variable. (This is most likely to occur after a restart, or at the start of a major iteration.)

In some cases, the Jacobian matrix may converge to values that make the basis exactly
singular. (For example, a whole row of the Jacobian could be zero at an optimal solution.)
Before exact singularity occurs, the basis could become very ill-conditioned and the opti-
mization could progress very slowly (if at all). Setting r2 = 1.0e-5, say, may help cause a
judicious change of basis.

Major feasibility tolerance εr Default = 1.0E-6

This specifies how accurately the nonlinear constraints should be satisfied. The default value
of 1.0E-6 is appropriate when the linear and nonlinear constraints contain data to about
that accuracy.

Let rowerr be defined as the maximum component of the constraint residual vector
F (x) +A1y − b1, normalized by the size of the solution. Thus,

rowerr = ‖F (x) +A1y − b1‖∞/xnorm, (7.1)

where xnorm is a measure of the size of the basic and superbasic variables. The solution
(x, y) is regarded as acceptably feasible if rowerr ≤ εr.

At each major iteration, rowerr appears in the output to the PRINT and SUMMARY

files as the quantity labeled “Feasbl”.
If some of the problem functions are known to be of low accuracy, a larger Major

feasibility tolerance may be appropriate.

Major optimality tolerance ε Default = 1.0E-6

This specifies the final accuracy of the dual variables. On successful termination, SNOPT

will have computed a primal and dual solution such that maxgap ≤ ε, where maxgap is the
scaled maximum complementarity gap:

maxgap = max
1≤i≤n+m

gapj/‖π‖, (7.2)

and gapj is an estimate of the complementarity gap for variable j. gapj is computed using
the reduced gradients dj = gj − πTaj , where gj is the jth component of the objective
gradient, aj is the associated column of the constraint matrix (A − I), and π is the set of
QP dual variables. If dj is zero, gapj is undefined; otherwise

gapj =

{
dj min{xj − lj , 1} if dj > 0;
−dj min{uj − xj , 1} if dj < 0.

• At each major iteration, maxgap appears in the output to the PRINT and SUMMARY

files as the quantity labeled “Optimal”.

• For linear programming (i.e., nnObj = 0 and nnCon = 0), gapj is the optimal LP
complementarity gap at the end of the first major iteration.

40 User’s Guide for SNOPT

• In the case of unconstrained or linearly constrained optimization, the major iterations
are terminated when maxgap ≤ ε. This is equivalent to requiring that the infinity
norm of the reduced gradient for the superbasic variables be less than ε.

• When there are nonlinear constraints, gapj is an estimate of how much the jth dual
variable has the “wrong sign”. It is therefore an estimate of how much the merit
function can be improved in subsequent iterations.

• In the above test, ‖π‖ is a measure of the size of the dual variables. It is included
to make the tests independent of a scale factor on the objective function. (see the
definition of ‖π‖ for the Minor optimality tolerance.

Major Iteration limit k Default = 20

This is the maximum number of major iterations allowed. It is intended to guard against
an excessive number of linearizations of the constraints.

For preliminary runs on a new problem, a fairly low Major iterations limit should be
specified (e.g., 10 or 20).

Major print level p Default = 00001

This varies the amount of information that will be output to the printer file. It is independent
of the Print frequency. Typical values are

Major print level 1

which gives normal output for linear and nonlinear problems, and

Major print level 11

which in addition gives details of the Jacobian factorization that commences each major
iteration.

In general, the value being specified is best thought of as a binary number of the form

Major print level JFDXbs

where each letter stands for a digit that is either 0 or 1. The quantities referred to are:
s a single line that gives a summary of each major iteration. (This entry in JFMXbs is

not strictly binary since the summary line is printed whenever JFMXbs ≥ 1).

b BASIS statistics, i.e., information relating to the basis matrix whenever it is refactor-
ized. (This output is always provided if JFMXbs ≥ 10).

X xk, the nonlinear variables involved in the objective function or the constraints.

D πk, the dual variables for the nonlinear constraints.

F F (xk), the values of the nonlinear constraint functions.

J J(xk), the Jacobian matrix.
To obtain output of any of the items JFMX, set the corresponding digit to 1, otherwise to 0.

If J=1, the Jacobian matrix will be output column-wise at the start of each major
iteration. Column j will be preceded by the value of the corresponding variable xj and a
key to indicate whether the variable is basic, superbasic or nonbasic. (Hence if J = 1, there

7. SPECS File Checklist and Defaults 41

is no reason to specify X=1 unless the objective contains more nonlinear variables than the
Jacobian.) A typical line of output is

3 1.250000D + 01BS 1 1.00000E + 00 4 2.00000E + 00

which would mean that x3 is basic at value 12.5, and the third column of the Jacobian has
elements of 1.0 and 2.0 in rows 1 and 4.

Major print level 0 may be used to suppress most output, including page ejects be-
tween major iterations. (Error messages will not be suppressed.) This print level should be
used only for production runs on well understood models. A high Print frequency may
also be appropriate for such cases, e.g. 100 or 1000. (For convenience, Print frequency
0 may be used as shorthand for Print frequency 99999.)

Minor print level k Default = 1

This controls the amount of printing done during the solution of the QP subproblem. Print-
ing is controlled by choosing k as follows.

0 No minor iteration output except error messages.

≥ 1 A single line of output each minor iteration (controlled by Print frequency).

≥ 10 Basis factorization statistics generated during the periodic refactorization of the basis
(see Factorization frequency). Statistics associated with the first factor is con-
trolled by the Major print level.

Major step limit r Default = 2.0

This parameter limits the change in x during a linesearch. It applies to all nonlinear prob-
lems, once a “feasible solution” or “feasible subproblem” has been found.

1. A linesearch determines a step α over the range 0 < α ≤ β, where β is 1 if there are
nonlinear constraints, or the step to the nearest upper or lower bound on x if all the
constraints are linear. Normally, the first steplength tried is α1 = min(1, β).

2. In some cases, such as f(x) = aebx or f(x) = axb, even a moderate change in the
components of x can lead to floating-point overflow. The parameter r is therefore
used to define a limit β̄ = r(1 + ‖x‖)/‖p‖, and the first evaluation of f(x) is at the
potentially smaller steplength α1 = min(1, β̄, β).

3. Wherever possible, upper and lower bounds on x should be used to prevent evalua-
tion of nonlinear functions at meaningless points. The Major step limit provides
an additional safeguard. The default value r = 2.0 should not affect progress on well
behaved problems, but setting r = 0.1 or 0.01 may be helpful when rapidly vary-
ing functions are present. A “good” starting point may be required. An important
application is to the class of nonlinear least-squares problems.

4. In cases where several local optima exist, specifying a small value for r may help locate
an optimum near the starting point.

Minimize Default
Maximize

This specifies the required direction of optimization. It applies to both linear and nonlinear
terms in the objective.

42 User’s Guide for SNOPT

Minor Iterations limit k Default = 40

This is the maximum number of iterations allowed between successive linearizations of the
nonlinear constraints. A moderate value (e.g., 10 ≤ k ≤ 50) prevents excessive effort being
expended on early major iterations, but allows later subproblems to be solved to completion.

In general it is unsafe to specify a value as small as k = 1 or 2. (Even when an optimal
solution has been reached, a few minor iterations may be needed for the corresponding
subproblem to be recognized as optimal.)

Note that an independent limit on total iterations should be specified by the Iterations
keyword as usual. If the problem is linearly constrained, this is the only limit (i.e., the Minor
Iterations keyword is ignored).

Minor feasibility tolerance t Default = 1.0E-6

A feasible QP is one in which all variables satisfy their upper and lower bounds to within
the absolute tolerance t. (This includes slack variables. Hence, the general linear constraints
are also satisfied to within t.)

• SNOPT attempts to find a feasible point for the QP subproblem before optimizing
the objective. If the sum of infeasibilities cannot be reduced to zero, the problem
is declared INFEASIBLE. SNOPT is then in elastic mode thereafter (with only the
linearized nonlinear constraints defined to be elastic). Let sInf be the corresponding
sum of infeasibilities. If sInf is quite small, it may be appropriate to raise t by a
factor of 10 or 100. Otherwise, some error in the data should be suspected.

• Note: if sInf is not small, there may be other points that have a significantly smaller
sum of infeasibilities. SNOPT does not attempt to find the solution that minimizes
the sum.

• If scale is used, feasibility is defined in terms of the scaled problem (since it is then
more likely to be meaningful).

• A nonlinear objective function f(x) will be evaluated only at feasible points. If there
are regions where f(x) is undefined, every attempt should be made to eliminate these
regions from the problem. For example, if f(x) =

√
x1 + log x2, it is essential to place

lower bounds on both variables. If Feasibility tolerance = 1.0E-6, the bounds
x1 ≥ 10−5 and x2 ≥ 10−4 might be appropriate. (The log singularity is more serious;
in general, keep x as far away from singularities as possible.)

• Bounds should also be used to keep x more than t away from singularities in f(x).

• If there are nonlinear constraints, each major iteration attempts to satisfy their lin-
earization to within the tolerance t. If this is not possible, the bounds on the nonlinear
constraints are relaxed temporarily (in several stages).

• Feasibility with respect to the nonlinear constraints themselves is measured against
the Major feasibility tolerance (not against t). The relevant test is made at the
start of a major iteration.

Minor optimality tolerance t Default = 1.0E-6

This is used to judge the size of the QP reduced gradients dj = gj − πTaj , where gj is the
jth component of the QP gradient, aj is the associated column of the QP constraint matrix,
and π is the set of QP dual variables.

7. SPECS File Checklist and Defaults 43

• By construction, the reduced gradients for basic variables are always zero. The QP
subproblem will be declared optimal if the reduced gradients for nonbasic variables at
their lower or upper bounds satisfy

dj/‖π‖ ≥ −r or dj/‖π‖ ≤ r

respectively, and if |dj |/‖π‖ ≤ r for superbasic variables.

• In the above tests, ‖π‖ is a measure of the size of the dual variables. It is included to
make the tests independent of a scale factor on the objective function.

• The quantity ‖π‖ actually used is defined by

‖π‖ = max{σ/
√
m, 1}, where σ =

m∑
i=1

|πi|,

so that only large scale factors are allowed for.

• If the objective is scaled down to be very small , the optimality test reduces to com-
paring dj against 0.01r.

Minor print level k Default = 0

This controls the amount of printing produced during the minor iterations. The levels of
printing available are as follows.

0 No minor iteration output except error messages.

≥ 1 Brief problem statistics, a single line of output each iteration (controlled by Print
frequency), and the exit condition for the QP subproblem.

≥ 10 Factorization statistics associated with basis factorizations controlled by Factorize
frequency..

New basis file f Default = 0

If f > 0, a basis map will be saved on file f every kth iteration, where k is the Save
frequency.

• The first card of the file will contain the word PROCEEDING if the run is still in progress.

• If f > 0, a basis map will also be saved at the end of a run, with some other word
indicating the final solution status.

Old basis file f Default = 0

If f > 0, the starting point will be obtained from this file in the format of Section 9.1.

• The file will usually have been output previously as a NEW BASIS FILE.

• The file will not be acceptable if the number of rows or columns in the problem has
been altered.

44 User’s Guide for SNOPT

Optimality tolerance t Default = 1.0e-6
see Major optimality tolerance

Partial price i Default = 10 (LP) or 1 (NLP)

This parameter is recommended for large problems that have significantly more variables
than constraints. It reduces the work required for each “pricing” operation (when a nonbasic
variable is selected to become superbasic).

• When i = 1, all columns of the constraint matrix
(
A − I

)
are searched.

• Otherwise, A and I are partitioned to give i roughly equal segments Aj , Ij (j = 1 to
i). If the previous pricing search was successful on Aj , Ij , the next search begins on
the segments Aj+1, Ij+1. (All subscripts here are modulo i.)

• If a reduced gradient is found that is larger than some dynamic tolerance, the variable
with the largest such reduced gradient (of appropriate sign) is selected to become
superbasic. If nothing is found, the search continues on the next segments Aj+2, Ij+2,
and so on.

• Partial price t (or t/2 or t/3) may be appropriate for time-stage models having t
time periods.

Pivot tolerance r Default = ε2/3

Broadly speaking, the pivot tolerance is used to prevent columns entering the basis if they
would cause the basis to become almost singular.

• When x changes to x+αp for some search direction p, a “ratio test” is used to determine
which component of x reaches an upper or lower bound first. The corresponding
element of p is called the pivot element.

• For linear problems, elements of p are ignored (and therefore cannot be pivot elements)
if they are smaller than the pivot tolerance r.

• For nonlinear problems, elements smaller than r‖p‖ are ignored.

• It is common for two or more variables to reach a bound at essentially the same time.
In such cases, the Minor Feasibility tolerance (say t) provides some freedom to
maximize the pivot element and thereby improve numerical stability. Excessively small
values of t should therefore not be specified.

• To a lesser extent, the Expand frequency (say f) also provides some freedom to
maximize the pivot element. Excessively large values of f should therefore not be
specified.

Print frequency k Default = 1

One line of the iteration log will be printed every kth minor iteration. A value such as
k = 10 is suggested for those interested only in the final solution.

7. SPECS File Checklist and Defaults 45

Punch file f Default = 0

If f > 0, the final solution obtained will be output to file f in the format described in
Section 9.2. For linear programs, this format is compatible with various commercial systems.

Save frequency k Default = 100

If a NEW BASIS file has been specified, a basis map describing the current solution will be
saved on the appropriate file every kth iteration. A BACKUP BASIS file will also be saved
if specified.

Scale option i Default = 2 (LP) or 1 (NLP)
Scale Yes
Scale No
Scale linear variables * Same as Scale option 1
Scale nonlinear variables * Same as Scale option 2
Scale all variables * Same as Scale option 2
Scale tolerance r Default = 0.9
Scale, Print
Scale, Print, Tolerance = r Default = 0.9

Three scale options are available as follows:

i Meaning

0 No scaling. If storage is at a premium, this option will save m+n words of workspace.

1 Linear constraints and variables are scaled by an iterative procedure that attempts
to make the matrix coefficients as close as possible to 1.0 (see Fourer [4]). This will
sometimes improve the performance of the solution procedures.

2 All constraints and variables are scaled by the iterative procedure. Also, a certain
additional scaling is performed that may be helpful if the right-hand side b or the
solution x is large. This takes into account columns of

(
A − I

)
that are fixed or

have positive lower bounds or negative upper bounds.

Scale option 2 is the default for linear programs.
Scale option 1 is the default for nonlinear problems. (Only linear variables are scaled.)
Scale Yes sets the default. (Caution: If all variables are nonlinear, Scale Yes unex-

pectedly does nothing , because there are no linear variables to scale.)
Scale No suppresses scaling (equivalent to Scale option 0).
If nonlinear constraints are present, Scale option 1 or 0 should generally be tried at

first. Scale option 2 gives scales that depend on the initial Jacobian, and should therefore
be used only if (a) a good starting point is provided, and (b) the problem is not highly
nonlinear.

Scale, Print causes the row-scales r(i) and column-scales c(j) to be printed. The
scaled matrix coefficients are āij = aijc(j)/r(i), and the scaled bounds on the variables and
slacks are l̄j = lj/c(j), ūj = uj/c(j), where c(j) ≡ r(j − n) if j > n.

All forms except Scale option may specify a tolerance r, where 0 < r < 1 (for exam-
ple: Scale, Print, Tolerance = 0.99). This affects how many passes might be needed
through the constraint matrix. On each pass, the scaling procedure computes the ratio of
the largest and smallest nonzero coefficients in each column:

ρj = max
i
|aij |/min

i
|aij | (aij 6= 0).

46 User’s Guide for SNOPT

If maxj ρj is less than r times its previous value, another scaling pass is performed to adjust
the row and column scales. Raising r from 0.9 to 0.99 (say) usually increases the number
of scaling passes through A. At most 10 passes are made.

If a Scale option has not already been specified, Scale, Print or Scale tolerance
both set the default scaling.

Solution Yes
Solution No
Solution If Optimal, Infeasible, or Unbounded
Solution File f Default = 0

The first four options determine whether the final solution obtained is to be output to the
PRINT file. The FILE option operates independently; if f > 0, the final solution will be
output to file f (whether optimal or not).

• For the Yes, If optimal, and If error options, floating-point numbers are printed
in f16.5 format, and “infinite” bounds are denoted by the word NONE.

• For the File option, all numbers are printed in 1pe16.6 format, including “infinite”
bounds which will have magnitude 1.000000E+20.

• To see more significant digits in the printed solution, it will sometimes be useful to
make f refer to the system PRINT file.

Start Objective Check at Column k Default = 1
Start Constraint Check at Column k Default = 1
Stop Objective Check at Column l Default = n′1
Stop Constraint Check at Column l Default = n′′1

These keywords may be used to abbreviate the verification of individual gradient elements
computed by subroutines funobj and funcon. For example:

• If the first 100 objective gradients appeared to be correct in an earlier run, and if
you have just found a bug in funobj that ought to fix up the 101-th component,
then you might as well specify Start Objective Check at Column 101. Similarly
for columns of the Jacobian matrix.

• If the first 100 variables occur nonlinearly in the constraints, and the remaining vari-
ables are nonlinear only in the objective, then funobj must set the first 100 components
of g(*) to zero, but these hardly need to be verified. The above data card would again
be appropriate.

These keywords are effective if Verify Level > 0.

Summary File f Default = 0
Summary Frequency k Default = 100

If f > 0, a brief log will be output to file f , including one line of information every kth
iteration. In an interactive environment, it is useful to direct this output to the terminal,
to allow a run to be monitored on-line. (If something looks wrong, the run can be manually
terminated.) Further details are given in Section 6.6.

7. SPECS File Checklist and Defaults 47

Superbasics Limit i Default = 50

This places a limit on the storage allocated for superbasic variables. Ideally, i should be set
slightly larger than the “number of degrees of freedom” expected at an optimal solution.

For linear programs, an optimum is normally a basic solution with no degrees of freedom.
(The number of variables lying strictly between their bounds is no more than m, the number
of general constraints.) The default value of i is therefore 1.

For nonlinear problems, the number of degrees of freedom is often called the “number
of independent variables”.

• Normally, i need not be greater than n1 + 1, where n1 is the number of nonlinear
variables.

• For many problems, i may be considerably smaller than n1. This will save storage if
n1 is very large.

• This parameter also sets the Reduced Hessian dimension, unless the latter is speci-
fied explicitly (and conversely).

Suppress Parameters

Normally SNOPT prints the SPECS file as it is being read, and then prints a complete list
of the available keywords and their final values. The Suppress Parameters option tells
SNOPT not to print the full list.

Unbounded Objective Value fmax Default = 1.0E+15
Unbounded Step Size αmax Default = 1.0E+18

These parameters are intended to detect unboundedness in nonlinear problems. (They may
or may not achieve that purpose!) During a line search, f is evaluated at points of the form
x+αp, where x and p are fixed and α varies. if |f | exceeds fmax or α exceeds αmax, iterations
are terminated with the exit message problem is unbounded (or badly scaled).

• If singularities are present, unboundedness in f(x) may be manifested by a floating-
point overflow (during the evaluation of f(x + αp)), before the test against fmax can
be made.

• Unboundedness in x is best avoided by placing finite upper and lower bounds on the
variables.

Verify Level l1 Default = 0
Verify No
Verify Level 0
Verify Objective Gradients
Verify Level 1
Verify Constraint Gradients
Verify Level 2
Verify
Verify Yes
Verify Gradients
Verify Level 3

These keywords refer to finite-difference checks on the gradient elements computed by the
user subroutines funobj and funcon. It is possible to specify Verify Levels 0–3 in several

48 User’s Guide for SNOPT

ways, as indicated above. For example, the nonlinear objective gradients (if any) will be
verified if either Verify Objective or Verify Level 1 is specified. Similarly, both the
objective and the constraint gradients will be verified if Verify Yes or Verify Level 3
or just Verify is specified.

If 0 ≤ l1 ≤ 3, gradients will be verified at the first point reached that satisfies the linear
constraints and the upper and lower bounds. The current linearization of the nonlinear
constraints must also be satisfied. If l1 = 0, only a “cheap” test will be performed, requiring
3 calls to funobj or 2 calls to funcon. If 1 ≤ l1 ≤ 3, a more reliable check will be made
on individual gradient components, within the ranges specified by the start and stop
keywords. A key of the form “OK” or “BAD?” indicates whether or not each component
appears to be correct.

• Verify level 3 should be specified whenever a new function routine is being devel-
oped.

• Missing gradients are not checked; i.e., they result in no overhead.

• The default action is to perform a cheap check on the gradients at the first feasible
point. Even on debugged function routines, the message “Gradients seem to be
OK” will provide certain comfort at nominal expense.

• If necessary, checking can be suppressed by specifying Verify Level -1 .

Total real workspace maxrw Default = lenrw
Total integer workspace maxiw Default = leniw
Total character workspace maxcw Default = lencw
User real workspace maxru Default = 0
User integer workspace maxiu Default = 0
User character workspace maxcu Default = 0

These keywords define the limits of the region of storage that SNOPT may use in solving
the current problem. The main work arrays are declared in the calling program, along with
their lengths, by statements of the form

data lencw/500/
character*8 cw(lencw)
data leniw/25000/
integer iw(leniw)
data lenrw/25000/
real rw(lenrw)

where the actual lengths of iw and rw must be specified at compile time.
The parameters maxcu, maxiu and maxru are relevant if you want to call snopt while

using cw, iw and iw to hold user information. This would be necessary, for example, if you
wish to access snopt internal variables in funobj or funcon. The values specified by the
workspace keywords are stored in

maxru = iw(2)
maxrw = iw(3)
maxiu = iw(4)
maxiw = iw(5)
maxcu = iw(6)
maxcw = iw(7)

7. SPECS File Checklist and Defaults 49

and workspace may be shared according to the following rules:

• cw(1:500), viw(1:500) and rw(1:500) are used by SNOPT, and must not be altered.

• cw(501:maxcu), iw(501:maxiu) and rw(501:maxru) are available to the user.

• cw(maxcu+1:maxcw), iw(maxiu+1:maxiw) and rw(maxru+1:maxrw) are used by SNOPT,
and must not be altered.

• cw(maxcw+1:lencw), iw(maxiw+1:leniw) and rw(maxrw+1:lenrw) are unused (or
available to the user).

The workspace parameters are most useful on machines with a virtual (paged) store.
Some systems will allow leniw and lenrw to be set to very large numbers (say 500000)
with no overhead in saving the resulting object code. At run time, when various problems
of different size are to be solved, it may be sensible to confine SNOPT to a portion of iw
and rw to reduce paging activity slightly. (However, SNOPT accesses storage contiguously
wherever possible, so the benefit may be slight. In general it is far better to have too much
storage than not enough.)

50 User’s Guide for SNOPT

8. Output

The following information is output to the PRINT file during the solution of each problem
referred to in the SPECS file.

• A listing of the relevant part of the SPECS file.

• A listing of the parameters that were or could have been set in the SPECS file.

• An estimate of the amount of working storage needed, compared to how much is
available.

• Some statistics about the problem being solved.

• The amount of storage available for the LU factorization of the basis matrix.

• A summary of the scaling procedure, if Scale was specified.

• Notes about the initial basis resulting from a CRASH procedure or a BASIS file.

• The major iteration log.

• The minor iteration log.

• Basis factorization statistics.

• The EXIT condition and some statistics about the solution obtained.

• The printed solution, if requested.

The last five items are described in the following sections. Further brief output may be
directed to the SUMMARY file, as discussed in §8.8.

8.1. The major iteration Log

If Major print level > 0, one line of information is output to the PRINT file every kth
minor iteration, where k is the specified Print frequency (default k = 1).

Label Description

Maj The current major iteration number.

Mnr is the number of iterations required by both the feasibility and optimality phases
of the QP subproblem. Generally, Mnr will be 1 in the later iterations, since
theoretical analysis predicts that the correct active set will be identified near the
solution (see §2).

Step The step length α taken along the current search direction p. The variables x have
just been changed to x+αp. On reasonably well-behaved problems, the unit step
will be taken as the solution is approached.

nObj The number of times subroutine funobj has been called to evaluate the nonlinear
objective function. Evaluations needed for the estimation of the gradients by
finite differences are not included. nObj is printed as a guide to the amount of
work required for the linesearch.

nCon The number of times subroutine funcon has been called to evaluate the nonlinear
constraint functions.

8. Output 51

Merit is the value of the augmented Lagrangian merit function (see (2.1)). This function
will decrease at each iteration unless it was necessary to increase the penalty
parameters (see §2). As the solution is approached, Merit will converge to the
value of the objective at the solution.

In elastic mode, the merit function is a composite function involving the constraint
violations weighted by the elastic weight.

If there are no nonlinear constraints (i.e., nnCon = 0), this entry contains Objective,
the value of the objective function. In this case, the objective will decrease mono-
tonically to its optimal value.

Feasbl is the value of rowerr, the maximum component of the scaled nonlinear constraint
residual (7.1). The solution is regarded as acceptably feasible if Feasbl is less than
or equal to the Major feasibility tolerance. Feasbl will be approximately
zero in the neighborhood of a solution.

If there are no nonlinear constraints (i.e., nnCon = 0), all iterates are feasible and
this entry is not printed.

Optimal is the value of maxgap, the maximum complementarity gap (7.2). Optimal is an
estimate of the degree of nonoptimality of the reduced costs. It is approximately
zero in the neighborhood of a solution.

nS The current number of superbasic variables.

Penalty is the Euclidean norm of the vector of penalty parameters used in the augmented
Lagrangian merit function (not printed if nnCon is zero).

LU The number of nonzeros representing the basis factors L and U on completion of
the QP subproblem.

If nonlinear constraints are present, the basis factorization B = LU is computed at
the start of the first minor iteration. At this stage, LU = lenL+lenU, where lenL,
the number of subdiagonal elements in the columns of a lower triangular matrix
and lenU is the number of diagonal and superdiagonal elements in the rows of an
upper-triangular matrix.

As columns of B are replaced during the minor iterations, LU may fluctuate up or
down; but in general it will tend to increase. As the solution is approached and
the minor iterations settle down LU will reflect the number of nonzeros after the
first LU .

If there are only linear constrants, refactorization will be subject only to the
optional parameter Factorize frequency and LU will tend to increase between
refactorizations.

Swp

Cond Hz An estimate of the condition number of the reduced Hessian of the Lagrangian.
It is the square of the ratio of the largest and smallest diagonals of the upper
triangular matrix R. This constitutes a lower bound on the condition number of
the matrix RTR that approximates the reduced Hessian. Cond Hz gives a rough
indication of whether or not the optimization procedure is having difficulty. If ε
is the relative precision of the machine being used, the SQP algorithm will make
slow progress if Cond Hz becomes as large as ε−1/2, and will probably fail to find
a better solution if Cond Hz reaches ε−3/4 or larger. (On most machines, these
values are about 108 and 1012.)

52 User’s Guide for SNOPT

To guard against high values of Cond Hz, attention should be given to the scaling
of the variables and the constraints. In some cases it may be necessary to add
upper or lower bounds to certain variables to keep them a reasonable distance
from singularities in the nonlinear functions or their derivatives.

Opt is a two-letter indication of the status of the two convergence tests involving the fea-
sibility and optimality of the iterates (the tests indicated by (7.2) and 7.1) defined
in the description of Major feasibility tolerance and Major optimality tolerance.
Each letter is “T” if the test is satisfied, and “F” otherwise.

If either of the indicators is “F” when snopt terminates with inform = 0, the user
should check the solution carefully.

8.2. The minor iteration Log

If Minor print level > 0, one line of information is output to the PRINT file every kth
minor iteration, where k is the specified Minor print frequency (default k = 1). A heading
is printed before the first such line following a basis factorization. The heading contains the
items described below. In this description, a PRICE operation is defined to be the process
by which one or more nonbasic variables are selected to become superbasic (in addition to
those already in the superbasic set). The variable selected will be denoted by jq. If the
problem is purely linear, variable jq will usually become basic immediately (unless it should
happen to reach its opposite bound and return to the nonbasic set).

If Partial price is in effect, variable jq is selected from App or Ipp, the ppth segments
of the constraint matrix (A − I).

Label Description

Itn The current iteration number.

pp The Partial Price indicator. The variable selected by the last PRICE operation
came from the ppth partition of A and −I. pp is set to zero when the basis is
refactored.

dj This is dj, the reduced cost (or reduced gradient) of the variable jq selected by
PRICE at the start of the present iteration. Algebraically, dj is dj = gj −πTaj for
j = jq, where gj is the gradient of the current objective function, π is the vector
of dual variables, and aj is the jth column of the constraint matrix (A − I).

Note that dj is the norm of the reduced-gradient vector at the start of the iteration,
just after the PRICE operation.

+SBS The variable jq selected by PRICE to be added to the superbasic set.

-SBS The variable chosen to leave the set of superbasics. It has become basic if the
entry under -B is nonzero; otherwise it has become nonbasic.

-BS The variable removed from the basis (if any) to become nonbasic.

-B The variable removed from the basis (if any) to swap with a slack variable made
superbasic by the latest PRICE. The swap is done to ensure that there are no
superbasic slacks.

Step The step length α taken along the current search direction p. The variables x have
just been changed to x + αp. If a variable is made superbasic during the current
iteration (i.e., +SBS is positive), Step will be the step to the nearest bound. During
phase 2, the step can be greater than one only if the reduced Hessian is not positive
definite.

8. Output 53

Pivot If column aq replaces the rth column of the basis B, Pivot is the rth element of a
vector y satisfying By = aq. Wherever possible, Step is chosen to avoid extremely
small values of Pivot (since they cause the basis to be nearly singular). In rare
cases, it may be necessary to increase the Pivot tolerance to exclude very small
elements of y from consideration during the computation of Step.

L The number of nonzeros representing the basis factor L. Immediately after a
basis factorization B = LU , this is lenL, the number of subdiagonal elements in
the columns of a lower triangular matrix. Further nonzeros are added to L when
various columns of B are later replaced. (Thus, L increases monotonically.)

U The number of nonzeros in the basis factor U . Immediately after a basis factor-
ization, this is lenU, the number of diagonal and superdiagonal elements in the
rows of an upper-triangular matrix. As columns of B are replaced, the matrix U is
maintained explicitly (in sparse form). The value of U may fluctuate up or down;
in general it will tend to increase.

ncp The number of compressions required to recover storage in the data structure for
U . This includes the number of compressions needed during the previous basis
factorization. Normally ncp should increase very slowly. If not, the amount of
integer and real workspace available to SNOPT should be increased by a significant
amount. As a suggestion, the work arrays iw(*) and rw(*) should be extended
by L + U elements.

nInf The number of infeasibilities before the present iteration. This number will not
increase unless the iterations are in elastic mode.

Sinf,Objective If nInf > 0, this is sInf, the sum of infeasibilities before the present
iteration. (It will usually decrease at each nonzero Step, but if nInf decreases
by 2 or more, sInf may occasionally increase. However, in elastic mode, it will
decrease monotonically.)

Otherwise, it is the value of the current objective function after the present iter-
ation.

Note: in elastic mode, the heading is Composite Obj.

The following items are printed if the problem is nonlinear or if the superbasic set is non-
empty (i.e., if the current solution is nonbasic).

Label Description

Norm rg This quantity is rg, the norm of the reduced-gradient vector at the start of the
iteration. (It is the Euclidean norm of the vector with elements dj for variables j
in the superbasic set. During phase 2 this norm will be approximately zero after
a unit step.

nS The current number of superbasic variables.

cond Hz An estimate of the condition number of the reduced Hessian. It is the square of
the ratio of the largest and smallest diagonals of the upper triangular matrix R.
This constitutes a lower bound on the condition number of the reduced Hessian
RTR.

To guard against high values of cond Hz, attention should be given to the scaling
of the variables and the constraints.

54 User’s Guide for SNOPT

8.3. Basis Factorization Statistics

When Print Level ≥ 20 and Print file > 0, the following lines of intermediate printout
(< 120 characters) are produced on the unit number specified by Print file whenever the
matrix B or BS = (B S)T is factorized. Gaussian elimination is used to compute an LU
factorization of B or BS , where PLPT is a lower triangular matrix and PUQ is an upper
triangular matrix for some permutation matrices P and Q. This factorization is stabilized
in the manner described under LU factor tolerance in §7.3.

Label Description

Factorize The number of factorizations since the start of the run.

Demand A code giving the reason for the present factorization.

Code Meaning

0 First LU factorization.

1 Number of updates reached the value of the optional parameter
Factorization Frequency.

2 Excessive non-zeros in the updated factors.

7 Not enough storage to update factors.

10 Row residuals too large (see the description for Check Frequency).

11 Ill-conditioning has caused inconsistent results.

Iteration The current iteration number.

Infeas The number of infeasibilities at the start of the previous iteration.

Objective If Infeas > 0, this is the sum of infeasibilities at the start of the previous
iteration.

If Infeas = 0, this is the value of the objective function after the previous
iteration.

Nonlinear The number of nonlinear variables in the current basis B. (not printed if BS is
factorized).

Linear The number of linear variables in B. (not printed if BS is factorized).

Slacks The number of slack variables in B. (not printed if BS is factorized).

Elems The number of nonzero matrix elements in B. (not printed if BS is factorized).

Density The percentage nonzero density of B, 100×Elems/(m×m), where m is the number
of rows in the problem (m = NONLINEAR + Linear + Slacks).

Comprssns The number of times the data structure holding the partially factored matrix
needed to be compressed, to recover unused storage. Ideally this number should
be zero. If it is more than 3 or 4, the amount of workspace available to SNOPT

should be increased for efficiency.

Merit The average Markowitz merit count for the elements chosen to be the diagonals
of PUQ. Each merit count is defined to be (c− 1)(r− 1) where c and r are the
number of nonzeros in the column and row containing the element at the time it
is selected to be the next diagonal. Merit is the average of m such quantities. It
gives an indication of how much work was required to preserve sparsity during
the factorization.

8. Output 55

lenL The number of nonzeros in L. On most machines, each nonzero is represented
by one eight-byte REAL and two two-byte integer data types.

lenU The number of nonzeros in U . The storage required for each nonzero is the
same as for the nonzeros of L.

Increase The percentage increase in the number of nonzeros in L and U relative to the
number of nonzeros in B; i.e., 100× (lenL + lenU− Elems)/Elems.

m is the number of rows in the problem. Note that m = Ut + Lt + bp.

Ut is the number of triangular rows of B at the top of U .

d1 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.3.

Lmax The maximum subdiagonal element in the columns of L. This will be no larger
than the LU factor tolerance.

Bmax The maximum nonzero element in B.

Umax The maximum nonzero element in U , excluding elements of B that remain in
U unaltered. (For example, if a slack variable is in the basis, the corresponding
row of B will become a row of U without alteration. Elements in such rows will
not contribute to Umax. If the basis is strictly triangular, none of the elements
of B will contribute, and Umax will be zero.)

Ideally, Umax should not be substantially larger than Bmax. If it is several orders
of magnitude larger, it may be advisable to reduce the LU factor tolerance
to some value nearer 1.0. (The default value is 10.0.)

Umax is not printed if BS is factorized.

Umin The smallest diagonal element of PUQ in absolute magnitude.

Growth The ratio Umax/Bmax, which should not be too large (see above).

As long as Lmax is not large (say 10.0 or less), the ratio
max{Bmax, Umax} / Umin gives an estimate of the condition number of B. If
this number is extremely large, the basis is nearly singular and some numerical
difficulties could conceivably occur. (However, an effort is made to avoid near-
singularity by using slacks to replace columns of B that would have made Umin
extremely small. Messages are issued to this effect, and the modified basis is
refactored.)

Lt is the number of triangular columns of B at the beginning of L.

bp is the size of the “bump” or block to be factorized nontrivially after the trian-
gular rows and columns have been removed.

d2 is the number of columns remaining when the density of the basis matrix being
factorized reached 0.6.

8.4. Crash statistics

When Print Level ≥ 20 and Print file > 0, the following CRASH statistics (< 120
characters) are produced on the unit number specified by Print file whenever Start =
’Cold’ (see §7.3). They refer to the number of columns selected by the CRASH procedure
during each of several passes through A, whilst searching for a triangular basis matrix.

Label Description

56 User’s Guide for SNOPT

Slacks is the number of slacks selected initially.

Free cols is the number of free columns in the basis.

Preferred is the number of “preferred” columns in the basis (i.e., hs(j) = 3 for some
j ≤ n).

Unit is the number of unit columns in the basis.

Double is the number of double columns in the basis.

Triangle is the number of triangular columns in the basis.

Pad is the number of slacks used to pad the basis.

8.5. EXIT Conditions

For each problem in the SPECS file, a message of the form EXIT -- message is printed to
summarize the final result. Here we describe each message and suggest possible courses of
action.

A number is associated with each message below. It is the final value assigned to the
integer variable inform.

The following messages arise when the SPECS file is found to contain

no further problems.

-2. EXIT -- input error. SNOPT encountered end-of-file or an
endrun card before finding a SPECS file on unit nn

The SPECS file may not be properly assigned. Its unit number nn is defined at compile
time in subroutine snInit, and normally it is the system card input stream.

Otherwise, the SPECS file may be empty, or cards containing the keywords Skip or
Endrun may imply that all problems should be ignored (see §6).

-1. ENDRUN
This message is printed at the end of a run if SNOPT terminates of its own accord. Oth-

erwise, the operating system will have intervened for one of many possible reasons (excess
time, missing file, arithmetic error in user routines, etc.).

The following messages arise when optimization terminates gracefully.
A solution exists, any of the BASIS files may be saved, and the solu-
tion will be printed and/or saved on the SOLUTION file if requested.

0. EXIT -- optimal solution found
This is the message we all hope to see! It is certainly preferable to every other message,

and we naturally want to believe what it says, because this is surely one situation where
the computer knows best . There may be cause for celebration if the objective function has
reached an astonishingly new high (or low). Or perhaps it will signal the end of a strenuous
series of runs that have iterated far into the night, depleting one’s patience and computing
funds to an equally alarming degree. (We hope not!)

In all cases, a distinct level of caution is in order, even if it can wait until next morning.
For example, if the objective value is much better than expected, we may have obtained an
optimal solution to the wrong problem! Almost any item of data could have that effect, if
it has the wrong value or is entered in the wrong columns of an input record. There may
be thousands of items of data in A, and the nonlinear functions (if any) could depend on

8. Output 57

input files and other data in innumerable ways. Verifying that the problem has been defined
correctly is one of the more difficult tasks for a model builder. It is good practice in the
function subroutines to print any data that is read in on the first entry.

If nonlinearities exist, one must always ask the question: could there be more than one
local optimum? When the constraints are linear and the objective is known to be convex
(e.g., a sum of squares) then all will be well if we are minimizing the objective: a local
minimum is a global minimum in the sense that no other point has a lower function value.
(However, many points could have the same objective value, particularly if the objective is
largely linear.) Conversely, if we are maximizing a convex function, a local maximum cannot
be expected to be global, unless there are sufficient constraints to confine the feasible region.

Similar statements could be made about nonlinear constraints defining convex or concave
regions. However, the functions of a problem are more likely to be neither convex nor
concave. Our advice is always to specify a starting point that is as good an estimate
as possible, and to include reasonable upper and lower bounds on all variables, in order to
confine the solution to the specific region of interest. We expect modellers to know something
about their problem, and to make use of that knowledge as they themselves know best.

One other caution about “Optimal solution”s. When nonlinearities are present, the
final size of the reduced-gradient norm (norm rg) should be examined to see if it is rea-
sonably small compared to the norm of the dual variables (norm pi). These quantities are
printed following the EXIT message. SNOPT attempts to ensure that

norm rg/norm pi ≤ Major optimality tolerance.

However, if messages of the form XXX search terminated occur at the end of the run,
this condition will probably not have been satisfied. The final solution may or may not be
acceptably close to optimal. Broadly speaking, if

norm rg /norm pi = 10−d,

then the objective function would probably change in the dth significant digit if optimization
could be continued. One must judge whether or not d is sufficiently large.

1. EXIT -- the problem is infeasible
When the constraints are linear, this message can probably be trusted. Feasibility is

measured with respect to the upper and lower bounds on the variables. The message tells us
that among all the points satisfying the general constraints Ax− s = b, there is apparently
no point that satisfies the bounds on x and s. Violations as small as the Feasibility
tolerance are ignored, but at least one component of x or s violates a bound by more than
the tolerance.

When nonlinear constraints are present, infeasibility is much harder to recognize cor-
rectly. Even if a feasible solution exists, the current linearization of the constraints may not
contain a feasible point. In an attempt to deal with this situation, when solving the QP
subproblem, SNOPT is prepared to relax the bounds on the slacks associated with nonlinear
rows. If a QP subproblem proves to be infeasible or unbounded (or if the Lagrange multiplier
estimates for the nonlinear constraints become large), SNOPT enters so-called “nonlinear
elastic” mode. In elastic mode, the subproblem includes the original QP objective and the
sum of the infeasibilities—suitably weighted using the “elastic weight”. In elastic mode,
some of the bounds on the nonlinear rows become “elastic”—i.e., they are allowed to violate
their specified bounds. Variables subject to elastic bounds are known as elastic variables.
An elastic variable is free to violate one or both of its original upper or lower bounds. If
the original problem has a feasible solution and the elastic weight is sufficiently large, a
feasible point eventually will be obtained for the perturbed constraints, and optimization
can continue on the subproblem. If the nonlinear problem has no feasible solution, SNOPT

58 User’s Guide for SNOPT

will tend to determine a “good” infeasible point if the elastic weight is sufficiently large.
(If the elastic weight were infinite, SNOPT would locally minimize the nonlinear constraint
violations subject to the linear constraints and bounds.)

Unfortunately, even though SNOPT locally minimizes the nonlinear constraint violations,
there may still exist other regions in which the nonlinear constraints are satisfied. Wherever
possible, nonlinear constraints should be defined in such a way that feasible points are known
to exist when the constraints are linearized.

2. EXIT -- the problem is unbounded (or badly scaled)
For linear problems, unboundedness is detected by the simplex method when a nonbasic

variable can apparently be increased or decreased by an arbitrary amount without causing
a basic variable to violate a bound. A message prior to the EXIT message will give the
index of the nonbasic variable. Consider adding an upper or lower bound to the variable.
Also, examine the constraints that have nonzeros in the associated column, to see if they
have been formulated as intended.

Very rarely, the scaling of the problem could be so poor that numerical error will give
an erroneous indication of unboundedness. Consider using the Scale option.

For nonlinear problems, SNOPT monitors both the size of the current objective function
and the size of the change in the variables at each step. If either of these is very large (as
judged by the Unbounded parameters – see §7.3), the problem is terminated and declared
UNBOUNDED. To avoid large function values, it may be necessary to impose bounds on some
of the variables in order to keep them away from singularities in the nonlinear functions.

3. EXIT -- too many iterations
Either the Iterations limit or the Major iterations limit was exceeded before the

required solution could be found. Check the iteration log to be sure that progress was being
made. If so, restart the run using a basis file that was saved (or should have been saved!)
at the end of the run.

4. EXIT -- requested by user in subroutine funobj (or funcon)
after nnn calls

This exit occurs if the subroutine parameter Mode is set to a negative number during some
call to funobj or funcon. SNOPT assumes that you want the problem to be abandoned
forthwith.

In some environments, this exit means that your subroutines were not successfully linked
to SNOPTİf the default versions of funobj and funcon are ever called, they issue a warning
message and then set mode to terminate the run. For example, you may have asked the
operating system to

link snopt, funobj, funcon

when in fact you should have said

link funobj, funcon, snopt

(or something similar) to give your own subroutines priority. Most linkers or loaders retain
the first version of any subprogram that they see.

5. EXIT -- the superbasics limit is too small: nnn
The problem appears to be more nonlinear than anticipated. The current set of basic and

superbasic variables have been optimized as much as possible and a PRICE operation is
necessary to continue, but there are already nnn superbasics (and no room for any more).

In general, raise the Superbasics limit s by a reasonable amount, bearing in mind the
storage needed for the reduced Hessian. (The Hessian dimension h will also increase to s

8. Output 59

unless specified otherwise, and the associated storage will be about 1
2s

2 words.) In extreme
cases you may have to set h < s to conserve storage, but beware that the rate of convergence
will probably fall off severely.

7. EXIT -- subroutine funobj seems to be giving incorrect gradients
A check has been made on some individual elements of the gradient array, and at least one

component gObj(j) is being set to a value that disagrees markedly with a forward-difference
estimate of ∂f/∂xj . (The relative difference between the computed and estimated values is
1.0 or more.) This exit is a safeguard, since SNOPT will usually fail to make progress when
the computed gradients are seriously inaccurate. In the process it may expend considerable
effort before terminating with Exit 9 below.

Check the function and gradient computation very carefully . A simple omission (such
as forgetting to divide f by 2) could explain everything. If fObj or gObj(j) is very large,
then give serious thought to scaling the function or the nonlinear variables.

If you feel certain that the computed g(j) is correct (and that the forward-difference es-
timate is therefore wrong), you can specify Verify level 0 to prevent individual elements
from being checked. However, the optimization procedure is likely to terminate unsuccess-
fully.

8. EXIT -- subroutine funcon seems to be giving incorrect gradients
This is analogous to the preceding exit. At least one of the computed Jacobian elements

is significantly different from an estimate obtained by forward-differencing the constraint
vector F (x). Follow the advice given above, trying to ensure that the arrays fcon and gCon
are being set correctly in subroutine funcon.

9. EXIT -- the current point cannot be improved upon
Several circumstances could lead to this exit.

1. Subroutine funobj and/or subroutine funcon could be returning accurate function
values but inaccurate gradients (or vice versa). This is the most likely cause. Study the
comments given for exits 7 and 8, and do your utmost to ensure that the subroutines
are coded correctly.

2. The function and gradient values could be consistent, but their precision could be too
low. For example, accidental use of a single-precision data type when double precision
was intended throughout, would lead to a relative function precision of about 10−6

instead of something like 10−15. The default Optimality tolerance of 10−6 would
need to be raised to about 10−3 for optimality to be declared (at a rather suboptimal
point). Of course, it is better to revise the function coding to obtain as much precision
as economically possible.

3. If function values are obtained from an expensive iterative process, they may be ac-
curate to rather few significant figures, and gradients will probably not be available.
One should specify

Function precision t

Major optimality tolerance
√
t

but even then, if t is as large as 10−5 or 10−6 (only 5 or 6 significant figures), the same
exit condition may occur. At present the only remedy is to increase the accuracy of
the function calculation.

10. EXIT -- cannot satisfy the general constraints
An LU factorization of the basis has just been obtained and used to recompute the basic

variables xB, given the present values of the superbasic and nonbasic variables. A single step

60 User’s Guide for SNOPT

of “iterative refinement” has also been applied to increase the accuracy of xB. However, a
row check has revealed that the resulting solution does not satisfy the current constraints
Ax− s = b sufficiently well.

This probably means that the current basis is very ill-conditioned. Request the Scale
option if there are any linear constraints and variables.

For certain highly structured basis matrices (notably those with band structure), a sys-
tematic growth may occur in the factor U . Consult the description of Umax, Umin and
Growth in §8.3, and set the LU factor tolerance to 2.0 (or possibly even smaller, but not
less than 1.0).

If the following exits occur during the first basis factorization, the
basic variables xB will have certain default values that may not be
particularly meaningful, and the dual vector π will be zero. BASIS

files will be saved if requested, but certain values in the printed solu-
tion will not be meaningful. The problem will be terminated.

20. EXIT -- not enough integer/real storage for the basis factors
The main integer or real storage array iw(*) or rw(*) is apparently not large enough for

this problem. The routine declaring rw should be recompiled with a larger dimension for rw
or iw. The new value should also be assigned to leniw or lenrw.

In some cases it may be sufficient to increase the specified Workspace (user), if it is
currently less than Workspace (total).

An estimate of the additional storage required is given in messages preceding the exit.

21. EXIT -- error in basis package
A preceding message will describe the error in more detail. One such message says that

the current basis has more than one element in row i and column j. This could be caused
by a corresponding error in the input parameters a(*), ha(*), and ka(*).

22. EXIT -- singular basis after nnn factorization attempts
This exit is highly unlikely to occur. The first factorization attempt will have found the

basis to be structurally or numerically singular. (Some diagonals of the triangular matrix
PUQ were respectively zero or smaller than a certain tolerance.) The associated variables
are replaced by slacks and the modified basis is refactorized. The ensuing singularity must
mean that the problem is badly scaled, or the LU factor tolerance is too high.

If the following messages arise, either an OLD BASIS file could not be
loaded properly, or some fatal system error has occurred. New BASIS

files cannot be saved, and there is no solution to print. The problem
is abandoned.

30. EXIT -- the basis file dimensions do not match this problem
On the first line of the OLD BASIS file, the dimensions labelled m and n are different from

those associated with the problem that has just been defined. You have probably loaded a
file that belongs to some other problem.

Remember, if you have added rows or columns to a(*), ha(*) and ka(*), you will have
to alter m and n and the map beginning on the third line (a hazardous operation). It may
be easier to restart with a PUNCH or DUMP file from the earlier version of the problem.

31. EXIT -- the basis file state vector does not match this problem
For some reason, the OLD BASIS file is incompatible with the present problem, or is not

consistent within itself. The number of basic entries in the state vector (i.e., the number of

8. Output 61

3’s in the map) is not the same as m on the first card, or else some of the 2’s in the map did
not have a corresponding “j xj” entry following the map.

32. EXIT -- system error. Wrong no. of basic variables: nnn
This exit should never happen. If it does, something is seriously awry in the SNOPT source

code. Perhaps the single- and double-precision files have been mixed up.

The following messages arise if additional storage is needed to allow

optimization to begin. The problem is abandoned.

42. EXIT -- not enough 8-character storage to start solving the problem
The main character storage array cw(*) is not large enough.

43. EXIT -- not enough integer storage to start solving the problem
The main integer storage array iw(*) is not large enough to provide workspace for the

optimization procedure. See the advice given for Exit 20.

44. EXIT -- not enough real storage to start solving the problem
The main real storage array rw(*) is not large enough to provide workspace for the op-

timization procedure. Be sure that the Superbasics limit and Hessian dimension are
not unreasonably large. Otherwise, see the advice given for Exit 43.

62 User’s Guide for SNOPT

8.6. Solution Output

At the end of a run, the final solution will be output to the PRINT file in accordance with
the Solution keyword. Some header information appears first to identify the problem and
the final state of the optimization procedure. A ROWS section and a COLUMNS section
then follow, giving one line of information for each row and column. The format used is
similar to that seen in commercial systems, though there is no rigid industry standard.

The ROWS section

The general constraints take the form l ≤ Ax ≤ u. The ith constraint is therefore of the
form

α ≤ aTx ≤ β.

Internally , the constraints take the form Ax − s = 0, where s is the set of slack variables
(which happen to satisfy the bounds l ≤ s ≤ u). For the ith constraint it is the slack
variable si that is directly available, and it is sometimes convenient to refer to its state. To
reduce clutter, a dot “·” is printed for any numerical value that is exactly zero.

Label Description

Number The value n + i. This is the internal number used to refer to the ith slack in the
iteration log.

Row The name of the ith row.

State The state of the ith row relative to the bounds α and β. The various states possible
are as follows.

LL The row is at its lower limit, α.

UL The row is at its upper limit, β.

EQ The lower and upper limit are the same, α = β.

BS The constraint is not binding. si is basic.

SBS The constraint is not binding. si is superbasic.

A key is sometimes printed before the State to give some additional information
about the state of the slack variable.

A Alternative optimum possible. The slack is nonbasic, but its reduced gradient
is essentially zero. This means that if the slack were allowed to start moving
away from its bound, there would be no change in the value of the objective
function. The values of the basic and superbasic variables might change, giving
a genuine alternative solution. However, if there are any degenerate variables
(labelled D), the actual change might prove to be zero, since one of them could
encounter a bound immediately. In either case, the values of dual variables
might also change.

D Degenerate. The slack is basic or superbasic, but it is equal to (or very close
to) one of its bounds.

I Infeasible. The slack is basic or superbasic and it is currently violating one of
its bounds by more than the Feasibility tolerance.

N Not precisely optimal . The slack is nonbasic or superbasic. If the Optimality
tolerance were tightened by a factor of 10 (e.g., if it were reduced from 10−5

to 10−6), the solution would not be declared optimal because the reduced
gradient for the slack would not be considered negligible. (If a loose tolerance

8. Output 63

has been used, or if the run was terminated before optimality, this key might
be helpful in deciding whether or not to restart the run.)
Note: If Scale is specified, the tests for assigning the A, D, I, N keys are made
on the scaled problem, since the keys are then more likely to be correct.

Activity The row value; i.e., the value of aTx.

Slack activity The amount by which the row differs from its nearest bound. (For free
rows, it is taken to be minus the Activity.)

Lower limit α, the lower bound on the row.

Upper limit β, the upper bound on the row.

Dual activity The value of the dual variable πi, often called the shadow price (or simplex
multiplier) for the ith constraint. The full vector π always satisfies BTπ = gB ,
where B is the current basis matrix and gB contains the associated gradients for
the current objective function.

I The constraint number, i.

The COLUMNS section

Here we talk about the “column variables” x. For convenience we let the jth component of
x be the variable xj and assume that it satisfies the bounds α ≤ xj ≤ β. A “·” is printed
for any numerical value that is exactly zero.

Label Description

Number The column number, j. This is the internal number used to refer to xj in the
iteration log.

Column The name of xj .

State The state of xj relative to the bounds α and β. The various states possible are as
follows.

LL xj is nonbasic at its lower limit, α.

UL xj is nonbasic at its upper limit, β.

EQ xj is nonbasic and fixed at the value α = β.

FR xj is nonbasic and currently zero, even though it is free to take any value. (Its
bounds are α = −∞, β = +∞. Such variables are normally basic.)

BS xj is basic.

SBS xj is superbasic.

A key is sometimes printed before the State to give some additional information
about the state of xj . The possible keys are A, D, I and N. They have the same
meaning as described above (for the ROWS section of the solution), but the words
“the slack” should be replaced by “xj”.

Activity The value of the variable xj .

Obj Gradient gj , the jth component of the linear and quadratic objective function q(x) +
cTx. (We define gj = 0 if the current solution is infeasible.)

Lower limit α, the lower bound on xj .

Upper limit β, the upper bound on xj .

64 User’s Guide for SNOPT

Reduced gradnt The reduced gradient dj = gj − πTaj , where aj is the jth column of the
constraint matrix (or the jth column of the Jacobian at the start of the final major
iteration).

M+J The value m+ j.
An example of the printed solution is given in §8. Infinite Upper and Lower limits are

output as the word None. Other real values are output with format f16.5. The maximum
record length is 111 characters, including the first (carriage-control) character.

Note: If two problems are the same except that one minimizes q(x) and the other
maximizes −q(x), their solutions will be the same but the signs of the dual variables πi and
the reduced gradients dj will be reversed.

8.7. The SOLUTION file

If a positive SOLUTION file is specified, the information contained in a printed solution
may also be output to the relevant file (which may be the PRINT file if so desired). Infinite
Upper and Lower limits appear as ±1020 rather than None. Other real values are output
with format 1pe16.6. Again, the maximum record length is 111 characters, including what
would be the carriage-control character if the file were printed.

A SOLUTION file is intended to be read from disk by a self-contained program that
extracts and saves certain values as required for possible further computation. Typically
the first 14 records would be ignored. Each subsequent record may be read using

format(i8, 2x, 2a4, 1x, a1, 1x, a3, 5e16.6, i7)

adapted to suit the occasion. The end of the ROWS section is marked by a record that
starts with a 1 and is otherwise blank. If this and the next 4 records are skipped, the
COLUMNS section can then be read under the same format. (There should be no need to
use any BACKSPACE statements.)

8.8. The SUMMARY file

If Summary file f is specified with f > 0, certain brief information will be output to file
f . When SNOPT is run interactively, file f will usually be the terminal. For batch jobs a
disk file should be used, to retain a concise log of each run if desired. (A SUMMARY file is
more easily perused than the associated PRINT file).

A SUMMARY file (like the PRINT file) is not rewound after a problem has been processed.
It can therefore accumulate a log for every problem in the SPECS file, if each specifies
the same file. The maximum record length is 72 characters, including a carriage-control
character in column 1.

The following information is included:

1. The Begin card from the SPECS file.

2. The basis file loaded, if any.

3. The status of the solution after each basis factorization (whether feasible; the objective
value; the number of function calls so far).

4. The same information every kth iteration, where k is the specified Summary frequency
(default k = 100).

5. Warnings and error messages.

6. The exit condition and a summary of the final solution.

Item 4 is preceded by a blank line, but item 5 is not.

8. Output 65

All items are illustrated below, where we give the SUMMARY file for the four-variable
problem of §3, with the option Summary frequency = 1.
==============================

S N O P T 5.3 (Oct 97)

==============================

Begin Toy NLP problem

Jacobian Dense

Scale option 1, Partial price 1

Linear constraints satisfied after 0 minor itns. 0 superbasics.

funcon sets 4 out of 4 constraint gradients.

funobj sets 3 out of 3 objective gradients.

Major Minor Step nCon Merit Feasibl Optimal nS Penalty PD

0 3 0.0E+00 1 1.700000E+01 1.7E-01 1.7E+00 0 0.0E+00 FF R

1 0 1.0E+00 2 1.400000E+01 0.0E+00 0.0E+00 0 6.0E+00 TT s

EXIT -- optimal solution found

Problem name Toy NLP

No. of iterations 3 Objective value 1.4000000000E+01

No. of major iterations 1 Linear objective 1.0000000000E+01

Penalty parameter 6.010E+00 Nonlinear objective 4.0000000000E+00

No. of calls to funobj 4 No. of calls to funcon 3

No. of degenerate steps 0 Percentage 0.00

Norm of x (scaled) 5.0E+00 Norm of pi (scaled) 9.0E+00

Norm of x 9.2E+00 Norm of pi 7.0E+00

Max Prim inf(scaled) 0 0.0E+00 Max Dual inf(scaled) 0 0.0E+00

Max Primal infeas 0 0.0E+00 Max Dual infeas 0 0.0E+00

Nonlinear constraint violn 0.0E+00

Solution printed on file 9

Time for MPS input 0.00 seconds

Time for solving problem 0.00 seconds

Time for solution output 0.00 seconds

Time for constraint functions 0.00 seconds

Time for objective function 0.00 seconds

snopt finished.

inform = 0

nInf = 0

sInf = 0.0000000000000000E+00

obj = 4.000000000000000

66 User’s Guide for SNOPT

9. BASIS Files

For non-trivial problems, it is advisable to save a BASIS file at the end of a run, in order
to restart the run if necessary, or to provide a good starting point for some closely related
problem.

Three formats are available for saving basis descriptions. They are invoked by SPECS

lines of the following form:

NEW BASIS FILE 10
BACKUP FILE 11 (same as NEW BASIS but on a different file)
PUNCH FILE 20
DUMP FILE 30

The file numbers may be whatever is convenient, or zero for files that are not wanted.
NEW BASIS and BACKUP files are saved every kth iteration, in that order, where k is

the Save frequency.
NEW, PUNCH and DUMP files are saved at the end of a run, in that order. They may

be re-loaded at the start of a subsequent run by specifying SPECS lines of the following form
respectively:

OLD BASIS FILE 10
INSERT FILE 20
LOAD FILE 30

Only one such file will actually be loaded. If more than one positive file number is specified,
the order of precedence is as shown. If no BASIS files are specified, one of the CRASH
OPTIONs takes effect.

Figures 1–3 illustrate the data formats used for BASIS files. 80-character fixed-length
records are suitable in all cases. (36-character records would be adequate for PUNCH and
DUMP files.) The files shown correspond to the optimal solution for the economic-growth
model MANNE, described in Section 8.4. Selected column numbers are included to define
significant data fields. The problem has 10 nonlinear constraints, 10 linear constraints, and
30 variables.

9.1. NEW and OLD BASIS Files

We sometimes call these files basis maps. They contain the most compact representation
of the state of each variable. They are intended for restarting the solution of a problem at
a point that was reached by an earlier run on the same problem or a related problem with
the same dimensions. (Perhaps the Iterations limit was previously too small, or some
other objective row is to be used.)

As illustrated in Figure 1, the following information is recorded in a NEW BASIS file.

1. A line containing the problem name, the iteration number when the file was created,
the status of the solution (OPTIMAL SOLN, INFEASIBLE, UNBOUNDED, EXCESS ITNS,
ERROR CONDN, or PROCEEDING), the number of infeasibilities, and the current objective
value (or the sum of infeasibilities).

2. A line containing the OBJECTIVE, RHS, RANGES and BOUNDS names, M = the number of
rows in the constraint matrix, N = the number of columns in the constraint matrix,
and SB = the number of superbasic variables.

3. A set of (N+M−1)/80+1 lines indicating the state of the N column variables and the M
slack variables in that order. One character HS(j) is recorded for each j = 1, 2, . . . , N+M
as follows, written with FORMAT(80I1).

9. BASIS Files 67

HS(j) State of the j-th variable
0 Nonbasic at lower bound
1 Nonbasic at upper bound
2 Superbasic
3 Basic

If variable j is fixed (lower bound = upper bound), then HS(j) may be 0 or 1. The
same is true if variable j is free (infinite bounds) and still nonbasic, although free
variables will almost always be basic.

4. A set of lines of the form
j xj

written with format(i8, 1pe24.14) and terminated by an entry with j = 0, where
j denotes the jth variable and xj is a real value. The jth variable is either the jth
column or the (j − N)th slack, if j > N. Typically, HS(j) = 2 (superbasic). When
nonlinear constraints are present, this list of superbasic variables is extended to include
all basic nonlinear variables. The Jacobian matrix can then be reconstructed exactly
for a restart.

Loading a NEW BASIS file

A file that has been saved as an OLD BASIS file may be input at the beginning of a later
run as a NEW BASIS file. The following notes are relevant:

1. The first line is input and printed but otherwise not used.

2. The values labelled M and N on the second line must agree with those for the problem
that has just been defined. The value labelled sb is input and printed but is not used.

3. The next set of lines must contain exactly m values hs(j) = 3, denoting the basic
variables.

4. The list of j and xj values must include an entry for every variable whose state is
hs(j) = 2 (the superbasic variables).

5. Further j and xj values may be included, in any order.

6. For any j in this list, if hs(j) = 3 (basic), the value xj will be recorded for nonlinear
variables, but the variable will remain basic.

7. If hs(j) 6= 3, variable j will be initialized at the value xj and its state will be reset
to 2 (superbasic). If the number of superbasic variables has already reached the
Superbasics limit, then variable j will be made nonbasic at the bound nearest to
xj (or at zero if it is a free variable).

sqdat2.. ITN 0 Optimal Soln NINF 0 OBJ -2.043665038075E+06

OBJ= RHS= RNG= BND= M= 8 N= 7 SB= 1

033023303133003

5 4.33461578293999E+02

0

Figure 1: Format of NEW and OLD BASIS files

68 User’s Guide for SNOPT

9.2. PUNCH and INSERT Files

These files provide compatibility with commercial mathematical programming systems. The
PUNCH file from a previous run may be used as an INSERT file for a later run on the same
problem. It may also be possible to modify the INSERT file and/or problem and still obtain
a useful advanced basis.

The standard MPS format has been slightly generalized to allow the saving and reloading
of nonbasic solutions. It is illustrated in Figure 2. Apart from the first and last line, each
entry has the following form:

Columns 2–3 5–12 15–22 25–36
Contents Key Name1 Name2 Value

The various keys are best defined in terms of the action they cause on input. It is
assumed that the basis is initially set to be the full set of slack variables, and that column
variables are initially at their smallest bound in absolute magnitude.

Key Action to be taken during INSERT
XL Make variable Name1 basic and slack Name2 nonbasic at its lower bound.
XU Make variable Name1 basic and slack Name2 nonbasic at its upper bound.
LL Make variable Name1 nonbasic at its lower bound.
UL Make variable Name1 nonbasic at its upper bound.
SB Make variable Name1 superbasic at the specified Value.

Note that Name1 may be a column name or a row name, but (on XL and XU lines) Name2
must be a row name. In all cases, row names indicate the associated slack variable, and
if Name1 is a nonlinear variable then its Value is recorded for possible use in defining the
initial Jacobian matrix.

The key SB is an addition to the standard MPS format to allow for nonbasic solutions.

Notes on PUNCH Data

1. Variables are output in natural order. For example, on the first XL or XU line, Name1
will be the first basic column and Name2 will be the first row whose slack is not basic.
(The slack could be nonbasic or superbasic.)

2. LL lines are not output for nonbasic variables if the corresponding lower bound value
is zero.

3. Superbasic slacks are output last.

4. PUNCH and INSERT files deal with the status and values of slack variables. This is
in contrast to the printed solution and the SOLUTION file, which deal with rows.

Notes on INSERT Data

1. Before an INSERT file is read, column variables are made nonbasic at their smallest
bound in absolute magnitude, and the slack variables are made basic.

2. Preferably an INSERT file should be an unmodified PUNCH file from an earlier run
on the same problem. If some rows have been added to the problem, the INSERT file
need not be altered. (The slacks for the new rows will be in the basis.)

3. Entries will be ignored if Name1 is already basic or superbasic. XL and XU lines will
be ignored if Name2 is not basic.

9. BASIS Files 69

4. SB lines may be added before the ENDATA line, to specify additional superbasic columns
or slacks.

5. An SB line will not alter the status of Name1 if the SUPERBASICS LIMIT has been
reached. However, the associated Value will be retained if Name1 is a Jacobian vari-
able.

9.3. DUMP and LOAD Files

These files are similar to PUNCH and INSERT files, but they record solution information
in a manner that is more direct and more easily modified. In particular, no distinction is
made between columns and slacks. Apart from the first and last line, each entry has the
form

Columns 2–3 5–12 25–36
Contents Key Name Value

as illustrated in Figure 3. The keys LL, UL, BS and SB mean Lower Limit, Upper Limit,
Basic and Superbasic respectively.

Notes on DUMP Data

1. A line is output for every variable, columns followed by slacks.

2. Nonbasic free variables will be output with either LL or UL keys and with Value zero.

Notes on LOAD Data

1. Before a LOAD file is read, all columns and slacks are made nonbasic at their smallest
bound in absolute magnitude. The basis is initially empty.

2. Each LL, UL or BS line causes Name to adopt the specified status. The associated
Value will be retained if Name is a Jacobian variable.

3. An SB line causes Name to become superbasic at the specified Value.

4. An entry will be ignored if Name is already basic or superbasic. (Thus, only the first
BS or SB line takes effect for any given Name.)

5. An SB line will not alter the status of Name if the Superbasics limit has been
reached, but the associated Value will be retained if Name is a Jacobian variable.

6. (Partial basis) Let M be the number of rows in the problem. If fewer than M variables are
specified to be basic, a tentative basis list will be constructed by adding the requisite
number of slacks, starting from the first row and taking those that were not previously
specified to be basic or superbasic. (If the resulting basis proves to be singular, the
basis factorization routine will replace a number of basic variables by other slacks.)
The starting point obtained in this way will not necessarily be “good”.

7. (Too many basics) If M variables have already been specified as basic, any further BS
keys will be treated as though they were SB. This feature may be useful for combining
solutions to smaller problems.

70 User’s Guide for SNOPT

NAME sqdat2.. PUNCH/INSERT

XL ...10001 3.89064E+02

XU ...10102 6.19233E+02

LL ...10203 1.00000E+02

SB ...10504 4.33462E+02

XL ...10705 3.00048E+02

XL ...11106 1.58194E+02

ENDATA

Figure 2: Format of PUNCH/INSERT files

NAME sqdat2.. DUMP/LOAD

LL ...100 0.00000E+00

BS ...101 3.89064E+02

BS ...102 6.19233E+02

LL ...103 1.00000E+02

SB ...104 4.33462E+02

BS ...105 3.00048E+02

BS ...106 1.58194E+02

LL ...107 2.00000E+03

BS ...108 4.83627E+01

UL ...109 1.00000E+02

BS ...110 3.24241E+01

BS ...111 1.60065E+01

LL ...112 1.50000E+03

LL ...113 2.50000E+02

BS ...114 -2.90022E+06

ENDATA

Figure 3: Format of DUMP/LOAD files

9.4. Restarting Modified Problems

Sections 9.1–9.3 document three distinct starting methods (OLD BASIS, INSERT and
LOAD files), which may be preferable to any of the cold start (CRASH) options. The
best choice depends on the extent to which a problem has been modified, and whether it is
more convenient to specify variables by number or by name. The following notes offer some
rules of thumb.

Protection

In general there is no danger of specifying infinite values. For example, if a variable is
specified to be nonbasic at an upper bound that happens to be +∞, it will be made nonbasic
at its lower bound. Conversely if its lower bound is −∞. If the variable is free (both bounds
infinite), it will be made nonbasic at value zero. No warning message will be issued.

Default Status

If the status of a variable is not explicitly given, it will initially be nonbasic at the bound
that is smallest in absolute magnitude. Ties are broken in favor of lower bounds, and free
variables will again take the value zero.

Restarting with Different Bounds

Suppose that a problem is to be restarted after the bounds on some variable X have been
altered. Any of the basis files may be used, but the starting point obtained depends on the
status of X at the time the basis is saved.

If X is basic or superbasic, the starting point will be the same as before (all other things
being equal). The value of X may lie outside its new set of bounds, but there will be minimal
loss of feasibility or optimality for the problem as a whole.

If X was previously fixed, it is likely to be nonbasic at its lower bound (which happens
to be the same as its upper bound). Increasing its upper bound will not affect the solution.

In contrast, if X is nonbasic at its upper bound and if that bound is altered, the starting
values for an arbitrary number of basic variables could be changed (since they will be recom-
puted from the nonbasic and superbasic variables). This may not be of great consequence,

9. BASIS Files 71

but sometimes it may be worthwhile to retain the old solution precisely. To do this, one
must make X superbasic at the original bound value.

For example, if x is nonbasic at an upper bound of 5.0 (which has now been changed),
one should insert a line of the form

j 5.0

near the end of an OLD BASIS file, or the line

SB X 5.0

near the end of an INSERT or LOAD file. Note that the SPECS file must specify a
Superbasics limit at least as large as the number of variables involved, even for purely
linear problems.

Sequences of Problems

Whenever practical, a series of related problems should be ordered so that the most tightly
constrained cases are solved first. Their solutions will often provide feasible starting points
for subsequent relaxed problems, as long the above precautions are taken.

