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Abstract

QPOPT is a set of Fortran subroutines for minimizing a general quadratic function
subject to linear constraints and simple upper and lower bounds. QPOPT may also be
used for linear programming and for finding a feasible point for a set of linear equalities
and inequalities.

If the quadratic function is convex (i.e., the Hessian is positive definite or positive
semidefinite), the solution obtained will be a global minimizer. If the quadratic is non-
convex (i.e., the Hessian is indefinite), the solution obtained will be a local minimizer
or a dead-point.

A two-phase active-set method is used. The first phase minimizes the sum of
infeasibilities. The second phase minimizes the quadratic function within the feasible
region, using a reduced Hessian to obtain search directions. The method is most
efficient when many constraints or bounds are active at the solution.

QPOPT is not intended for large sparse problems, but there is no fixed limit on
problem size. The source code is suitable for all scientific machines with a Fortran 77
compiler. This includes mainframes, workstations and PCs, preferably with 1IMB or
more of main storage.

Keywords: Quadratic programming, linear programming, linear constraints, active-
set method, inertia-controlling method, reduced Hessian.
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1. Purpose

QPOPT is a collection of Fortran 77 subroutines for solving the quadratic programming
problem: minimize a quadratic objective function subject to a set of linear constraints and
bounds. The problem is assumed to be in the following form:

LCQP minimize q(x)

rER™

Ax

subject to £ <r(x) < u, r(z) = < * )

The vector x is a set of variables, [ and u are bounds on the variables and the product Az,
and A is an m, X n matrix (absent if m, is zero).

1.1. Problem types

The objective function g(x) is specified by an optional input parameter of the form Problem
type = a. The following choices are allowed:

a q(x)
FP None Find a feasible point
LP Tz Linear program
QP1 %xTHx H symmetric
QP2 | Tz + %I’TH:E H symmetric
QP3 %xTGTGx G m x n upper-trapezoidal
QP4 | cTx + %xTGTGx G m x n upper-trapezoidal

The vector ¢ is an n-vector, where n is a parameter of subroutine gpopt, and m is specified by
another optional parameter, Hessian rows. Problems of type LP and QP are referred to as
linear programs and quadratic programs respectively. Optional parameters such as Problem
type are defined in Section 6, along with their default values. The default problem type is
QP2.

Let the first and second derivatives of ¢(x) be the gradient g(x) = V¢ and the Hessian
H = V?q. The defining feature of a quadratic function is that the matrix H is constant.
There is no restriction on H apart from symmetry. For problems FP and LP, H = 0. For QP1
and QP2, H is a given symmetric matrix. For QP3 and QP4, H = GG, where the matrix G is
given. (When H = GG it may be more reliable to use LSSOL [GHM ' 86], but QPOPT will
be more efficient if many constraints or bounds are active at the solution.) If H happens to
be zero for any of the QP options, QPOPT will solve the resulting linear program; however,
it is more efficient to set Problem type = LP.

1.2. Bounds

Note that upper and lower bounds are specified for all variables and constraints. This
form allows full generality in specifying various types of constraint. In particular, the jth
constraint may be defined as an equality by setting ¢; = u;. If certain bounds are not
present, the associated elements of ¢ or u may be set to special values that are treated as
—00 Or +00.
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Figure 1: Illustration of the constraints ¢; < r;(z) < u;.

Figure 1 illustrates the jth pair of constraints ¢; < r;(x) < u; in problem LCQP. The
constant 0 is the Feasibility tolerance. The constraints /; < r; < u; are considered
“satisfied” if r; lies in Regions 2, 3 or 4, and “inactive” if r; lies in Region 3. The constraint
r; > {; is considered “active” in Region 2 and “violated” in Region 1. Similarly, r; < u; is
active in Region 4 and violated in Region 5. For equality constraints (¢; = u;), Regions 2
and 4 are the same and Region 3 is empty.

1.3. Input data

Most of the data for LCQP is supplied as parameters to subroutine gpopt. An initial
estimate of the solution x must be provided in parameter x. For the QP options, the user
may supply H or G ezplicitly as a matrix (see parameter H of subroutine qpopt), or implicitly
via a subroutine that computes the product Hz for any given vector x (see parameter gpHess
of gpopt). An example is given in Section 9.

QPOPT can accept information about which constraints are likely to be active at the
solution. This Warm start facility may reduce computational effort significantly with a se-
quence of related problems. For example, NPSOL [GMSW&6] uses this feature in a sequential
quadratic programming method for nonlinearly constrained optimization.

1.4. Subroutines

QPOPT is accessed via the following routines:

qpopt  (§4) The top-level routine, called by the user.
gpHess (§5) Called by gpopt. Defines Hz for given vectors .
gpprms (§6.2) Called by the user to read an Options file (if any).

qpprm, gpprmi, gpprmr (§6.3) Called by the user to input a single option.

1.5. Files
QPOPT reads or creates the following files:

Options file. If present, this is input by calling qpprms.

Summary file. Intended for output to the screen in an interactive environment. It con-
tains error messages and a brief iteration log, or may be suppressed.

Print file. Intended for a permanent file. It contains error messages, a more detailed
iteration log, and optionally the printed solution.
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1.6. Exit conditions

In general, a successful run of QPOPT will indicate one of three situations:

A minimizer was found. If H is positive definite or positive semidefinite, the final solu-
tion x is a global minimizer. (All other feasible points give a higher objective value.)
Otherwise, the solution is a local minimizer, which may or may not be global. (All
other points in the immediate neighborhood give a higher objective.)

A dead-point was reached. This might occur for problems types QP1 and QP2, if H
is not sufficiently positive definite. The necessary conditions for a local minimizer
are satisfied but the sufficient conditions are not. If H is positive semidefinite, the
solution is a weak minimizer. (The objective value is a global optimum, but there
may be neighboring points with the same objective value.) If H is indefinite, a
feasible direction of decrease may or may not exist (so the point may not be a local
or weak minimizer).

The solution is unbounded. The objective can be made arbitrarily negative if some
components of x are allowed to become arbitrarily large. Additional constraints
may be needed. This cannot occur if H is sufficiently positive definite.

1.7. Implementation

The source code for QPOPT is about 14,000 lines of Fortran 77 (ANSI Standard X3.9-1978),
of which nearly 50% are comments. If there are n variables and m, general constraints, the
storage required is approximately 24n(n + m;) Kbytes.
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2. Description of Method

QPOPT is based on an inertia-controlling method that maintains a Cholesky factorization
of the reduced Hessian (see below). The method follows Gill and Murray [GM78] and is
described in [GMSW91]. Here we briefly summarize the main features of the method. Where
possible, we refer to the following quantities by name: the parameters of subroutine gpopt,
the optional parameters, and items that appear in the printed output.

2.1. Overview

QPOPT’s method has a feasibility phase (finding a feasible point by minimizing the sum of
infeasibilities) and an optimality phase (minimizing the quadratic objective function within
the feasible region). The computations in both phases are performed by the same subrou-
tines, but with different objective functions. The feasibility phase does not perform the
standard simplex method; i.e., it does not necessarily find a vertex (with n constraints ac-
tive), except in the LP case if m; < n. Once an iterate is feasible, all subsequent iterates
remain feasible. Once a vertex is reached, all subsequent iterates are at a vertex.

QPOPT is designed to be efficient when applied to a sequence of related problems—for
example, within a sequential quadratic programming method for nonlinearly constrained
optimization (e.g., the NPSOL package [GMSW86]). In particular, the user may specify
an initial working set (the indices of the constraints believed to be satisfied exactly at the
solution); see the discussion of Warm Start.

In general, an iterative process is required to solve a quadratic program. Each new
iterate = is defined by

T =uz+ap, (2.1)

where the step length « is a non-negative scalar, and p is called the search direction. (For
simplicity, we shall consider a typical iteration and avoid reference to the iteration index.)

2.2. The working set

At each point =, a working set of constraints is defined to be a linearly independent subset
of the constraints that are satisfied “exactly” (to within the Feasibility tolerance). The
working set is the current prediction of the constraints that hold with equality at a solution
of LCQP. Let m,, denote the number of constraints in the working set (including bounds),
and let W denote the associated m,, X n matrix of constraint gradients.

The definition of the search direction ensures that constraints in the working set remain
unaltered for any value of the step length. Thus,

Wp=0. (2.2)
In order to compute p, a T'Q factorization of W is used:
wQ=(0 T), (2.3)

where T is a nonsingular m,, X m,, upper-triangular matrix, and @ is an n X n nonsingular
matrix constructed from a product of orthogonal transformations (see [GMSWE&4]). If the
columns of @) are partitioned so that

Q=(2 Y),

where Y is n x my, and Z is n X n, (where n, = n — m,,), then the columns of Z form
a basis for the null space of W. Let n, be an integer such that 0 < ny < n,, and let Z,
denote a matrix whose n, columns are a subset of the columns of Z. (The integer ny is the



2. Description of Method 7

quantity “Zr” in the printed output from gpopt). In many cases, Zy will include all the
columns of Z. The direction p will satisfy (2.2) if

P = ZgPr, (2.4)

where pp is any ny-vector.

2.3. The reduced Hessian

Let g, and H, denote the transformed gradient and transformed Hessian:

9o = Q'g(x) and Hy=Q'HQ.

The first ny elements of the vector g, will be denoted by gr, and the first n, rows and
columns of the matrix H, will be denoted by Hy. The quantities g, and Hj are known as
the reduced gradient and reduced Hessian of g(x), respectively. Roughly speaking, gr and
H, describe the first and second derivatives of an unconstrained problem for the calculation
of pr.

At each iteration, a triangular factorization of Hy is available. If Hy is positive definite,
H, = RTR, where R is the upper-triangular Cholesky factor of H,. If H, is not positive
definite, H, = RTDR, where D = diag(1, 1, ..., 1, w), with w < 0.

In QPOPT, the computation is arranged so that the reduced-gradient vector is a multiple
of ex, a vector of all zeros except in the last (nyth) position. This allows py in (2.4) to be
computed from a single back-substitution,

Rpr = veg, (2.5)

where v is a scalar whose definition depends on whether the reduced Hessian is positive
definite at x. In the positive-definite case, x + p is the minimizer of the objective function
subject to the working-set constraints being treated as equalities. If Hj is not positive
definite, py satisfies

ngRpR <0 and gz.;pR <0,

allowing the objective function to be reduced by any step of the form x + ap, a > 0.

2.4. Optimality conditions

If the reduced gradient is zero, x is a constrained stationary point in the subspace defined
by Z. During the feasibility phase, the reduced gradient will usually be zero only at a vertex
(although it may be zero elsewhere in the presence of constraint dependencies). During the
optimality phase, a zero reduced gradient implies that = minimizes the quadratic objective
when the constraints in the working set are treated as equalities. At a constrained stationary
point, Lagrange multipliers A are defined from the equations

WTX = g(z). (2.6)

A Lagrange multiplier A; corresponding to an inequality constraint in the working set is said
to be optimal if A; < o when the associated constraint is at its upper bound, or if \; > —o
when the associated constraint is at its lower bound, where o depends on the Optimality
tolerance. If a multiplier is non-optimal, the objective function (either the true objective
or the sum of infeasibilities) can be reduced by deleting the corresponding constraint from
the working set (with index Jdel; see Section 7).

If optimal multipliers occur during the feasibility phase but the sum of infeasibilities
is not zero, there is no feasible point. The user can request QPOPT to continue until the
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sum of infeasibilities is minimized (see the discussion of Min sum). At such a point, the
Lagrange multiplier A; corresponding to an inequality constraint in the working set will be
such that —(1 4+ 0) < A; < o when the associated constraint is at its upper bound, and
—0 < \; < 1+ 0 when the associated constraint is at its lower bound. Lagrange multipliers
for equality constraints will satisfy |\;| <1+ 0.

If the reduced gradient is not zero, Lagrange multipliers need not be computed and
the search direction p is given by Zyp, (see (2.5)). The step length is chosen to maintain
feasibility with respect to the satisfied constraints. If Hj is positive definite and = + p is
feasible, « is defined to be one. In this case, the reduced gradient at £ will be zero, and
Lagrange multipliers are computed. Otherwise, « is set to «,,, the step to the “nearest”
constraint (with index Jadd; see Section 7). This constraint is added to the working set at
the next iteration.

If the reduced Hessian Hy is not positive definite and «,, does not exist (i.e., no pos-
itive step «,, reaches the boundary of a constraint not in the working set), then QPOPT
terminates at x and declares the problem to be unbounded.
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3. Further Details of the Method

The following sections are not essential knowledge for normal users. They give background
on the active-set strategy and the anti-cycling procedure.

3.1. Treatment of simple upper and lower bounds

Bound constraints ¢ < z < u are treated specially by gqpopt. The presence of a bound
constraint in the working set has the effect of fixing the corresponding component of the
search direction to zero. Thus, the associated variable is fized, and specification of the
working set induces a partition of x into fized and free variables. For some permutation P,

the working-set matrix satisfies
F N
WP = ( ) ,
Iy

where ( F N ) is part of the matrix A, and I, corresponds to some of the bounds. The
matrices F' and N contain the free and fixed columns of the general constraints in the
working set. A T'Q factorization F'Qp = ( 0 T, ) of the smaller matrix F provides the
required 1" and @ as follows:

o Qr B T. N
(o) )

The matrix @ is implemented as a dense orthogonal matrix. Each change in the working
set leads to a simple change to F: if the status of a general constraint changes, a row of F
is altered; if a bound constraint enters or leaves the working set, a column of F changes.
The matrices T, @ and R are held explicitly; together with the vectors Q”g, and Q7c.
Products of plane rotations are used to update @) and T as the working set changes.
The triangular factor R associated with the reduced Hessian is updated only during the
optimality phase.

3.2. The initial working set

For a cold start, the initial working set includes equality constraints and others that are
close to being satisfied at the starting point. (“Close” is defined under Crash tolerance.)
For a warm start, the initial working is specified by the user (and possibly revised to improve
the condition of W).

At the start of the optimality phase, QPOPT must ensure that the initial reduced Hessian
H, is positive-definite. It does so by including a suitably large number of constraints (real
or artificial) in the initial working set. (When W contains n constraints, H, has no rows
and columns. Such a matrix is positive definite by definition.)

Let H, denote the first n, rows and columns of H, = QTHQ at the beginning of
the optimality phase. A partial Cholesky factorization with interchanges is used to find an
upper-triangular matrix R that is the factor of the largest positive-definite leading submatrix
of H,. The use of interchanges tends to maximize the dimension of R. (The condition of
R may be controlled by setting the Rank Tolerance.) Let Z, denote the columns of Z
corresponding to R, and let Z be partitioned as Z = ( I g ) A working set for
which Z, defines the null space can be obtained by including the rows of Z1 as “artificial
constraints” (with bounds equal to the current value of Z7z). Minimization of the objective
function then proceeds within the subspace defined by Zj, as described in Section 2.
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The artificially augmented working set is given by

T
w

so that p will satisfy Wp = 0 and Z%p = 0. By definition of the TQ factors of W, we have

WQ<€5>Q<€5>(ZR Z, Y)=(0 T),

~(11)

Hence the TQ factors of W are available trivially.

The matrix Z, is not kept fixed, since its role is purely to define an appropriate null
space; the T'(Q factorization can therefore be updated in the normal fashion as the iterations
proceed. No work is required to “delete” the artificial constraints associated with Z, when
ZTg = 0, since this simply involves repartitioning Q. The “artificial” multiplier vector
associated with the rows of Z1 is equal to Z%g, and the multipliers corresponding to the
rows of the “true” working set are the multipliers that would be obtained if the artificial
constraints were not present. If an artificial constraint is “deleted” from the working set,
an A appears alongside the entry in the Jdel column of the printed output (see Section 7).
The multiplier may have either sign.

The number of columns in Z, and Z, the Euclidean norm of Z%1g, and the condition
estimator of R appear in the printed output as Art, Zr, Norm gZ and Cond Rz (see Section 7).

Under some circumstances, a different type of artificial constraint is used when solving a
linear program. Although the algorithm of gpopt does not usually perform simplex steps (in
the traditional sense), there is one exception: a linear program with fewer general constraints
than variables (i.e., m, < n). (Use of the simplex method in this situation leads to savings in
storage.) At the starting point, the “natural” working set (the set of constraints exactly or
nearly satisfied at the starting point) is augmented with a suitable number of “temporary”
bounds, each of which has the effect of temporarily fixing a variable at its current value. In
subsequent iterations, a temporary bound is treated similarly to normal constraints until it
is deleted from the working set, in which case it is never added again. If a temporary bound
is “deleted” from the working set, an F (for “Fixed”) appears alongside the entry in the
Jdel column of the printed output (see Section 7). Again, the multiplier may have either
sign.

where

3.3. The anti-cycling procedure

The EXPAND procedure [GMSWR&9] is used to reduce the possibility of cycling at a point
where the active constraints are nearly linearly dependent. The main feature of EXPAND
is that the feasibility tolerance is increased slightly at the start of every iteration. This
allows a positive step to be taken every iteration, perhaps at the expense of violating the
constraints slightly.

Suppose that the Feasibility tolerance is §. Over a period of K iterations (where K
is defined by the Expand frequency), the feasibility tolerance actually used by QPOPT—the
working feasibility tolerance—increases from 0.59 to 0 (in steps of 0.5/ K).

At certain stages the following “resetting procedure” is used to remove constraint in-
feasibilities. First, all variables whose upper or lower bounds are in the working set are
moved exactly onto their bounds. A count is kept of the number of nontrivial adjustments
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made. If the count is positive, iterative refinement is used to give variables that satisfy the
working set to (essentially) machine precision. Finally, the working feasibility tolerance is
reinitialized to 0.54.

If a problem requires more than K iterations, the resetting procedure is invoked and
a new cycle of iterations is started with K incremented by 10. (The decision to resume
the feasibility phase or optimality phase is based on comparing any constraint infeasibilities
with d.)

The resetting procedure is also invoked when QPOPT reaches an apparently optimal,
infeasible or unbounded solution, unless this situation has already occurred twice. If any
nontrivial adjustments are made, iterations are continued.

The EXPAND procedure not only allows a positive step to be taken at every iteration,
but also provides a potential choice of constraints to be added to the working set. Let v,
denote the maximum step at which x+ a,,;p does not violate any constraint by more than its
feasibility tolerance. All constraints at distance a (o < ) along p from the current point
are then viewed as acceptable candidates for inclusion in the working set. The constraint
whose normal makes the largest angle with the search direction is added to the working set.
This strategy helps keep the working-set matrix W well-conditioned.
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4. Subroutine gpopt

Problem LCQP is solved by a call to subroutine gpopt, whose parameters are defined here.
Note that most machines use double precision declarations as shown, but some machines
use real. The same applies to the user routine gpHess.

Specification:

subroutine gpopt ( n, nclin, 1dA, 1dH,

$ A, bl, bu, cvec, H,
$ gpHess, istate, x,
$ inform, iter, obj, Ax, clamda,
$ iw, leniw, w, lenw )
external qpHess
integer leniw, lenw
integer istate(n+nclin)
integer iw(leniw)

double precision  A(1dA,*), Ax(*), bl(n+nclin), bu(n+nclin)
double precision clamda(n+nclin), cvec(*)

double precision  H(1dH,*), x(n)

double precision w(lenw)

On entry:

n (> 0) is n, the number of variables in the problem.
nclin (> 0) is m,, the number of general linear constraints.
1dA (> 1 and > nclin) is the row dimension of the array A.

1dH (> 1 and > n) is the row dimension of the array H. (1dH must be at least the value
of Hessian Rows if that parameter is set.)

A is an array of dimension (1dA,k) for some k& > n. It contains the matrix A for the
linear constraints. If nclin is zero, A is not referenced. (In that case, A may be
dimensioned (1dA,1) with 1dA = 1, or it could be any convenient array.)

bl is an array of dimension at least n + nclin containing the lower bounds ¢ in prob-
lem LCQP. To specify a non-existent bound (¢; = —o0), set bl(j) < —bigbnd,
where bigbnd is the Infinite Bound (default value 10%°). To specify an equality
constraint r;(x) = 3, set bl(j) = bu(j) = 3, where |5| < bigbnd.

bu is an array of dimension at least n4+nclin containing the upper bounds v in problem
LCQP. To specify a non-existent bound (u; = 00), set bu(j) > bigbnd. The bounds
must satisfy bl(j) < bu(j) for all j.

cvec is an array of dimension at least n that contains the explicit linear term ¢ of the
objective. If the problem is of type FP, QP1, or QP3, cvec is not referenced. (In that
case, cvec may be dimensioned (1), or it could be any convenient array.)

H is an array of dimension (1dH, k) for some k > n. H may be used to store the matrix
H associated with the quadratic term of the QP objective. It is not referenced if
the problem type is FP or LP. (In that case, H may be dimensioned (1dH,1) with
1dH = 1, or it could be any convenient array.)
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gpHess

istate

iw

leniw

lenw

Let the number of Hessian rows be m (with default value m = n). For problems
QP1 or QP2, the first m rows and columns of H must contain the leading m x m rows
and columns of the symmetric Hessian matrix H. Only the diagonal and upper-
triangular elements of the leading m rows and columns of H are referenced. The
remaining elements need not be assigned.

For problems QP3 and QP4, the first m rows of H must contain an m X n upper-
trapezoidal matrix G such that H = G7G. The factor G need not be of full rank,
i.e., some of the diagonals may be zero. However, as a general rule, the larger the
dimension of the leading non-singular submatrix of G, the fewer iterations will be
required. Elements outside the upper-triangular part of the first m rows of H are
assumed to be zero and need not be assigned.

In some cases, H need not be used; see the next parameter gqpHess.

is the name of a subroutine that defines the product Hzx for a given vector x. It
must be declared as external in the routine that calls gpopt. In general, the user
need not provide this parameter, because a “default” subroutine named gpHess
is distributed with QPOPT. It uses the array H defined above. In some cases, a
specialized routine may be desirable. For a detailed description of gpHess, see
Section 5.

is an integer array of dimension at least n + nclin. It need not be initialized if
qpopt is called with a Cold Start (the default option).

For a Warm Start, istate must be set. It is used to choose the first working set. If
gpopt has just been called on a problem with the same dimensions, istate already
contains valid values. In general, istate(j) should indicate whether either of the
constraints r;(z) > £; or r;(x) < u; is expected to be active at a solution of LCQP.

The ordering of istate is the same as for bl, bu and r(x), i.e., the first n components
refer to the bounds on the variables, and the last nclin refer to the bounds on Ax.
Possible values for istate(j) follow.

0 Neither r;(z) > ¢; nor r;(z) < u; is expected to be active.

1 rj(x) > {; is expected to be active.

2 rj(x) < u; is expected to be active.

3 This may be used if £; = u;. Normally an equality constraint r;(z) = ¢; = u;

is active at a solution.

The values 1, 2 and 3 have the same effect when b1(j) = bu(j). If necessary, qpopt
will override the given values, so a poor choice will not cause the algorithm to fail.

is an array of dimension at least n. It contains an initial estimate of the solution.
is an array of dimension leniw that provides integer workspace.

is the dimension of iw. It must be at least 2n + 3.

is an array of dimension lenw that provides real workspace.

is the dimension of w. It depends on the Problem type and nclin as shown in the
following table.
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Problem type ‘ nclin ‘ Minimum value of lenw
FP >n 2n2 + 7n+ 5nclin
0 <nclin<n | 2(nclin+1)2+ 7n+ 5nclin
=0 Tn+1
LP >n 2n2 +8n+ 5nclin
0 <nclin<n | 2(nclin+ 1)? +8n + 5nclin
=0 8n+1
QP1 or QP3 >0 2n? + 7n+ 5nclin
=0 n? +7n
QP2 or QP4 >0 2n? +8n+ 5nclin
=0 n? 4+ 8n
If insufficient workspace is provided, minimum acceptable values of lenw and leniw
are printed on the Summary file and Print file. In this event, minimum values of
leniw and lenw are stored in iw(1) and iw(2) respectively. Thus, appropriate
values may be obtained from a preliminary run with lenw = 1. (The values will be
printed before gpopt terminates with inform = 6.)
On exit:

inform reports the result of the call to gpopt. (If printlevel > 0, a short description of
inform is printed.) Specific values of inform follow.

0

x is a unique local minimizer. This means that x is feasible (it satisfies the
constraints to the accuracy requested by the Feasibility tolerance), the
reduced gradient is negligible, the Lagrange multipliers are optimal, and the
reduced Hessian Hp is positive definite. If H is positive definite or positive
semidefinite, x is a global minimizer. (All other feasible points give a higher
objective value.) Otherwise, the solution is a local minimizer, which may or
may not be global. (All other points in the immediate neighborhood give a
higher objective.)

A dead-point was reached. This might occur for problems types QP1 and
QP2, if H is not sufficiently positive definite. If H is positive semidefinite,
the solution is a weak minimizer. (The objective value is a global optimum,
but there may be infinitely many neighboring points with the same objective
value.) If H is indefinite, a feasible direction of decrease may or may not
exist (so the point may not be a local or weak minimizer).

At a dead-point, the necessary conditions for optimality are satisfied (x is
feasible, the reduced gradient is negligible, the Lagrange multipliers are opti-
mal, and Hy is positive semidefinite.) However, Hp, is nearly singular, and/or
there are some very small multipliers. If H is indefinite, x is not necessarily
a local solution of the problem. Verification of optimality requires further
information, and is in general an NP-hard problem [PS588].

The solution appears to be unbounded. The objective is not bounded below
in the feasible region, if the elements of x are allowed to be arbitrarily large.
This occurs if a step larger than Infinite Step would have to be taken in
order to continue the algorithm, or the next step would result in a component
of x having magnitude larger than Infinite Bound. It should not occur if
H is sufficiently positive definite.
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iter

istate

Ax

clamda

obj

3 The constraints could not be satisfied. The problem has no feasible solution.
See Section 8.4 for further comments.

4 One of the iteration limits was reached before normal termination occurred.
See Feasibility Phase Iterations and Optimality Phase Iterations.

) The Maximum degrees of freedom is too small. The reduced Hessian must
expand if further progress is to be made.

An input parameter was invalid.
The Problem type was not recognized.

is the total number of iterations performed in the feasibility phase and the optimality
phase.

describes the status of the constraints ¢ < r(z) < u in problem LCQP. For the jth
lower or upper bound, j = 1 to n + nclin, the possible values of istate(j) are as
follows (where ¢ is the Feasibility tolerance; see Figure 1).

—2  (Region 1) The lower bound is violated by more than .
—1  (Region 5) The upper bound is violated by more than 4.
0  (Region 3) Both bounds are satisfied by more than ¢.
1 (Region 2) The lower bound is active (to within ¢).
2 (Region 4) The upper bound is active (to within ¢).
3 (Region 2 = Region 4) The bounds are equal and the equality constraint is

satisfied (to within ¢).

4 (Region 2, 3 or 4) The quantity r;(x) is temporarily fixed at its current value,
which may or may not be equal to a bound.

These values are labeled in the printed solution according to the following table.

’ Region \ 1 2 3 4 5 2=4 24 ‘
istate(y) -2 1 0 2 -1 3 4
Printed solution | -=-= LL FR UL ++ EQ TF

is an array of dimension at least nclin that contains the linear constraint functions
Az at the final iterate. If nclin = 0, Ax is not referenced. (In that case, Ax may
be dimensioned (1), or it could be any convenient array.)

contains the Lagrange multipliers at x. At an optimal solution, clamda(j) will be
non-negative if istate(j) = 1 and non-positive if istate(j) = 2.

is the final value of the QP objective if x is feasible (zero for problem FP), or the
sum of infeasibilities if x is infeasible.

contains the final estimate of the solution.
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5. Subroutine qpHess

Quadratic programs have a matrix H in the objective function. The method employed by
gpopt requires products of the form Hx for given vectors z. These are provided by the
parameter gpHess (an external subroutine).

QPOPT contains a standard subroutine gpHess to compute such products from the input
parameter H, as described in Section 4. In some cases, it may be more efficient to use a
special version of gpHess.

Subroutine gpHess is not accessed if the problem type is FP or LP.

Specification:

subroutine gpHess( n, 1dH, jthcol, H, x, Hx, iw, leniw, w, lenw )

integer n, 1dH, jthcol
integer leniw, lenw
integer iw(leniw)

double precision  H(1dH,*), Hx(n), x(n)
double precision w(lenw)

On entry:

n is the same as the input parameter of gpopt. It must not be altered. Similarly for
the parameters 1dH, H, iw, leniw, w and lenw.

jthcol may be ignored if it is convenient to treat all vectors x the same way. In general,
jtheol is an integer j. If 7 = 0, x contains a general vector . If 1 < j <n, x
contains the jth column of the identity matrix, and it may be easy to code the
product Hx specially without referencing x. (The product is the jth column of H.)

X contains a vector x such that the product Hzx should be returned in Hx.
On exit:
Hx should contain the product Hzx for the vector stored in x.

Note that the array H is never touched by qpopt; it is just passed to gpHess. The default
version of gpHess uses H as a two-dimensional array. In some cases it may be desirable to
use a one-dimensional array to transmit data or workspace to special versions of qpHess. H
should then be declared as double precision H(1dH).

In other situations, it may be desirable to compute Hx without accessing H at all.
For example, H may be sparse or have a regular structure. (See subroutine gpHesl in
Section 9.2.) The parameters H and 1dH may then refer to any convenient array.
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6. The Options File

Several choices in QPOPT’s algorithm logic may be defined by various optional parameters
(more briefly known as options or parameters).

In order to reduce the number of subroutine parameters for qpopt, the options have
default values that are appropriate for most problems. Options need be specified only if
their values should be different from the default.

New values may be specified by calling subroutines qpprms, gpprm, gpprmi or gpprmr
(Sections 6.2 and 6.3). Each such option is listed on the Print file unless the first option is
either Nolist or Print file O.

Options are not altered by QPOPT, so that any changes are cumulative. The option
Defaults may be used to reset all options to their default values.

6.1. Format of option strings

Each optional parameter is defined by an option string of up to 72 characters, containing
one or more items separated by spaces or equal signs (=). Alphabetic characters may be in
upper or lower case. An example option string is Print level = 5. In general, an option
string contains the following items:

1. A keyword such as Print.
2. A phrase such as level that qualifies the keyword. (Typically 0, 1 or 2 words.)

3. A number that specifies either an integer or a real value (only for some options).
Such numbers may be up to 16 contiguous characters in Fortran 77’s F, E or D formats,
terminated by a space.

Blank strings and comments may be used to improve readability. A comment begins with
an asterisk (*) and all subsequent characters are ignored. Synonyms are recognized for some
of the keywords, and abbreviations may be used if there is no ambiguity.

The following are examples of valid option strings for QPOPT:

NOLIST

COLD START

Warm start

Problem type LP

Problem type Quadratic Program * Same as QP or QP2
Problem Type QP4

Min sum Yes

Feasibility Phase iteration limit 100

Feasibility tolerance 1.0e-8 * for IEEE double precision
Crash tolerance 0.002

Defaults

* This string will be ignored. So will a blank line.
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6.2. Subroutine gpprms (to read an Options file)
Subroutine gpprms provided with QPOPT reads options from an external Options file.

Specification:
subroutine gpprms( ioptns, inform )
integer ioptns, inform
On entry:
ioptns is the unit number of the Options file, in the range [0,99]. It is not changed.

On exit:
inform reports the result of the call to gpprms as follows.
0 A valid Options file was found.

1 ioptns is out of range.

2 The file does not begin with Begin or end with End.

Each line of the Options file defines a single optional parameter. The file must be
delimited by Begin and End. For example:

Begin
Problem type LP
Print file 9
Print level =5
End

If this Options file is on unit number 4, it can be input as follows:

ioptns = 4
call gpprms( ioptns, inform )

In some cases, the file associated with unit ioptns may need to be opened before the call
to gpprms. It may also need to be closed and reopened if it is to be re-read.
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6.3. Subroutines gpprm, gpprmi, gpprmr (to define a single option)

The second method of setting the optional parameters is through a series of calls to the
following subroutines. Each call sets one option.

Specification:

subroutine gpprm ( string )
character*(x) string

subroutine gpprmi( string, ivalue )
character*(*) string
integer ivalue

subroutine gpprmr( string, rvalue )
character*(*) string
double precision  rvalue

On entry:
string must be a valid option string.

ivalue is the required integer value.

rvalue is the required real value.

On exit:

All parameters are unchanged.

The following examples illustrate setting options within the calling program. Note that
on most machines, featol must be declared double precision.

maxitn = 200

featol 1.0d-6

call gpprm ( ’Problem type QP3’ )

call gpprmi( ’Feasibility Phase iterations’, maxitn )
call gpprmr( ’Feasibility tolerance >, featol )
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6.4. Description of the optional parameters

Permissible options are defined below in alphabetical order. For each option, we give the
keyword, any essential qualifiers, the default value, and the definition. The minimum ab-
breviation of each keyword and qualifier is underlined. If no characters of a qualifier are
underlined, the qualifier may be omitted. The letters ¢ and r denote integer and real val-
ues required for certain options. The letter a denotes a character string value. The number
u represents unit roundoff for floating-point arithmetic (typically about 10716).

Check frequency i Default = 50

Every ith iteration, a numerical test is made to see if the current solution z satisfies the
constraints in the working set. If the largest residual of the constraints in the working
set is judged to be too large, the working-set matrix is refactorized and the variables are
recomputed to satisfy the constraints more accurately.

Cold start Default = Coldstart
Warm start

This option specifies how the initial working set is chosen. With a cold start, QPOPT
chooses the initial working set based on the values of the variables and constraints at the
initial point. Broadly speaking, the first working set will include all equality constraints and
also any bounds or inequality constraints that are “nearly” satisfied (to within the Crash
tolerance).

With a warm start, the user must provide a valid definition of every element of the
array istate (see Section 4). The specification of istate will be overridden if necessary,
so that a poor choice of the working set will not cause a fatal error. A warm start will be
advantageous if a good estimate of the initial working set is available—for example, when
gpopt is called repeatedly to solve related problems.

Crash tolerance T Default = 0.01

This value is used for cold starts when QPOPT selects an initial working set. Bounds
and inequality constraints are selected if they are satisfied to within r. More precisely, a
constraint of the form alxz > I will be included in the initial working set if [aTz—1| < r(14]1]).
If r <0 or r > 1, the default value is used.

Defaults

This is a special option to reset all options to their default values.

Expand frequency i Default = 5

This defines the initial value of an integer K that is used in an anti-cycling procedure
designed to guarantee progress even on highly degenerate problems. See Section 3.3.
If © > 9999999, no anti-cycling procedure is invoked.

Feasibility tolerance r Default = /u

This defines the maximum acceptable absolute violation in each constraint at a “feasible”
point. For example, if the variables and the coefficients in the general constraints are of
order unity, and the latter are correct to about 6 decimal digits, it would be appropriate to
specify 7 as 1076, If » < u, the default value is used.
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Before optimizing the objective function, QPOPT must find a feasible point for the
constraints. If the sum of infeasibilities cannot be reduced to zero and Min sum = Yes is
requested, QPOPT will find the minimum value of the sum. Let sinf be the corresponding
sum of infeasibilities. If sinf is quite small, it may be appropriate to raise r by a factor of
10 or 100. Otherwise, some error in the data should be suspected.

Feasibility Phase Iteration Limit i1 Default = max(50,5(n + m,))
Optimality Phase Iteration Limit io Default = max(50,5(n + m,))

The scalars i; and 45 specify the maximum number of iterations allowed in the feasibility
and optimality phases. Optimality Phase iteration limit is equivalent to Iteration
limit. Setting i1 = 0 and PrintLevel > 0 means that the workspace needed will be
computed and printed, but no iterations will be performed.

Hessian rows P Default = 0 or n

This specifies m, the number of rows in the Hessian matrix H or its trapezoidal factor G
(as used by the default subroutine gpHess).

For problem type FP or LP, the default value is m = 0.

For problems QP1 or QP2, the first m rows and columns of H are obtained from H, and
the remainder are assumed to be zero. For problems QP3 or QP4, the factor G is assumed
to have m rows and n columns. They are obtained from the associated rows of H.

If a nonstandard subroutine gqpHess is provided, it may access the problem type and m
via the lines

integer lgptyp, mHess
common /sollgp/ lgptyp, mHess

For example, Problem type FP, LP or QP4 sets 1gptyp = 1, 2 or 6 respectively, and Hessian
rows 20 sets mHess = 20.

Infinite Bound size r Default = 1020

If » > 0, r defines the “infinite” bound bigbnd in the definition of the problem constraints.
Any upper bound greater than or equal to bigbnd will be regarded as plus infinity (and
similarly for a lower bound less than or equal to —bigbnd). If » < 0, the default value is
used.

Infinite Step size r Default = max(bigbnd, 10?")

If r > 0, r specifies the magnitude of the change in variables that will be considered a step to
an unbounded solution. (Note that an unbounded solution can occur only when the Hessian
is not positive definite.) If the change in x during an iteration would exceed the value of
Infinite Step, the objective function is considered to be unbounded below in the feasible
region. If r < 0, the default value is used.

Iteration limit i Default = max(50,5(n + m,))
Iters
Itns

This is equivalent to Optimality Phase iteration limit. See Feasibility Phase.
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List

If Nolist was previously specified, List restores output to the Print file whenever an
optional parameter is reset.

Maximum degrees of freedom i Default = n

This places a limit on the storage allocated for the triangular factor R of the reduced Hessian
Hy,. Ideally, 7 should be set slightly larger than the value of n, expected at the solution.
(See Sections 2.2 and 2.3.) It need not be larger than m, + 1, where my is the number of
variables that appear nonlinearly in the quadratic objective function. For many problems
it can be much smaller than my.

For quadratic problems, a minimizer may lie on any number of constraints, so that ny
may vary between 1 and n. The default value of i is therefore the number of variables n. If
Hessian rows m is specified, the default value of ¢ is the same number, m.

Min sum a Default = No

This option comes into effect if the constraints cannot be satisfied. If Min sum = No, QPOPT
terminates as soon as it is evident that no feasible point exists. The final point will generally
not be the point at which the sum of infeasibilities is minimized. If Min sum = Yes, QPOPT
will continue until either the sum of infeasibilities is minimized or the iteration limit is
reached, whichever occurs first.

Nolist

This suppresses output to the Print file whenever an optional parameter is reset.

Optimality tolerance r Default = /u

This affects the tolerance used to determine if the Lagrange multipliers associated with the
bounds and general constraints have the right “sign” for the solution to be judged optimal.
Increasing r tends to cause earlier termination. For example, if » = 1.0e — 4, the final
objective value will probably agree with the true optimum to about 4 digits.

Print file 7 Default = 9

This specifies the unit number for the Print file (see Section 8).
If 7 > 0 and PrintLevel > 0, a full log in 132-column format is output to unit 7. Print
file = O suppresses all output, including error messages and the QPOPT banner.

Print level i Default = 10

This controls the amount of printing produced by QPOPT as follows.
i
0 No output.
1 The final solution only, sent to the Print file.
5 One line of output for each iteration (no printout of the final solution).

> 10 The final solution and one line of output for each iteration (Print file only).
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> 20 At each iteration, the Lagrange multipliers, the variables x, the constraint values Ax
and the constraint status (Print file only).

> 30 At each iteration, the diagonal elements of the upper-triangular matrix 7" associated
with the T'Q factorization (2.3) of the working set, and the diagonal elements of the
upper-triangular matrix R (Print file only).

Problem type a Default = QP2

This option specifies the type of objective function to be minimized during the optimality
phase. The following are the six values of ¢ and the dimensions of the arrays that must be
specified to define the objective function:

FP H and cvec not accessed;

LP H not accessed, cvec(n) required;

QP1 H(1dH,*) symmetric, cvec not referenced;

QP2 H(1dH, *) symmetric, cvec(n);

QP3 H(1dH, *) upper-trapezoidal, cvec not referenced;

QP4 H(14dH,*) upper-trapezoidal, cvec(n);

Linear program is equivalent to LP. Quadratic program and QP are equivalent to the
default option QP2. For the QP options, the default subroutine gpHess requires array
H(1dH,*) as shown. If a non-standard gpHess is provided, H(*,*) may be used in any
convenient way.

Rank tolerance r Default = 100u

This parameter enables the user to control the condition number of the triangular factor R
(see Section 2). If p; denotes the function p; = max{|R11|, |Raz|, ..., |Rii|}, the dimension
of R is defined to be smallest index ¢ such that |R; 11 41| < /r|pit1]. If r <0, the default
value is used.

Summary file ) Default = 6

This specifies the unit number for the Summary file (see Section 7).

If ¢ > 0 and PrintLevel > 0, a brief log in 80-column format is output to unit 7. On
many systems, the default value refers to the screen. Summary file = 0 suppresses output,
including error messages.

Warm start

See Cold start.
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6.5. Optional parameter checklist and default values

For easy reference, the following list shows all valid options and their default values. The
quantity u represents floating-point precision (=~ 1.1 x 10716 in IEEE double-precision arith-
metic).

Check frequency 50 *

Cold start *

Crash tolerance .01 %

Expand frequency 5 *
Feasibility tolerance 1.1e-8 * /u
Feasibility Phase iteration limit 50  * or 5(n+m,)
Optimality Phase iteration limit 50  * or 5(n+m,)
Hessian rows n *

Infinite bound size 1.0e+20 * Plus infinity
Infinite step size 1.0e+20 *

Iteration limit 50 * or 5(n+my)
List *

Maximum degrees of freedom n *

Min sum No *

Optimality tolerance 1.1e-8 * /u

Print file 9 *

Print level 10 *

Problem type QP * or QP2

Rank tolerance 1.1e-14 * 100u
Summary file 6 *

Other options may be set as follows:

Defaults
Nolist
Warm start
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7. The Summary File

The Summary file records an iteration log and error messages. It is intended for screen
output, but may be directed to a permanent file or suppressed, using the Summary file
and Print level options. The maximum record length is 63 characters.

By default, a Summary file is produced on unit 6. In general, output is produced if
Summaryfile > 0 and PrintLevel > 0.

To suppress the Summary file, specify Summary file O.

7.1. Constraint numbering and status

For items Jdel and Jadd in the iteration log, indices 1 through n refer to the bounds on the
variables, and indices n + 1 through n + nclin refer to the general constraints.

When the status of a constraint changes, the index of the constraint is printed, along
with the designation L (lower bound), U (upper bound), E (equality), F (temporarily fixed
variable) or A (artificial constraint).

7.2. The iteration log

The following items are printed after each iteration.

Itn is the iteration count (including those from the feasibility phase).

Jdel is the index of the constraint deleted from the working set. If Jdel is
zero, no constraint was deleted.

Jadd is the index of the constraint added to the working set. If Jadd is zero,
no constraint was added.

Step is the step taken along the computed search direction. If a constraint is
added during the current iteration (i.e., Jadd is positive), Step will be the
step to the nearest constraint. During the optimality phase, the step can
be greater than one only if the reduced Hessian is not positive definite.

Ninf is the number of violated constraints (infeasibilities). This number will
be zero during the optimality phase.

Sinf/Objective is the value of the current objective function. If x is not feasible, Sinf
gives a weighted sum of the magnitudes of constraint violations. If x is
feasible, Objective is the value of the objective function. The output line
for the final iteration of the feasibility phase (i.e., the first iteration for
which Ninf is zero) will give the value of the true objective at the first
feasible point.

During the feasibility phase, the number of constraint infeasibilities will
not increase until either a feasible point is found, or the optimality of the
multipliers implies that no feasible point exists. Note that the sum of
the infeasibilities may increase or decrease during this part of the feasi-
bility phase. However, once optimal phase-one multipliers are obtained,
the number of infeasibilities can increase, but the sum of infeasibilities
must either remain constant or be reduced until the minimum sum of
infeasibilities is found.

In the optimality phase, the value of the objective is non-increasing.

Norm gZ is || ZTg||, the Euclidean norm of the reduced gradient with respect to Zy.
During the optimality phase, this norm will be approximately zero after
a unit step.
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Zr is the number of columns of Z (see Section 2). Zr is the dimension of the
subspace in which the objective is currently being minimized. The value
of Zr is the number of variables minus the number of constraints in the
working set.

Art is the number of artificial constraints in the working set, i.e., the number

of columns of Z, (see Section 3). At the start of the optimality phase,
Art provides an estimate of the number of nonpositive eigenvalues in the
reduced Hessian.

7.3. Summary file from the example problem

The following Summary file is produced by the example program described in Section 9.

Itn Jdel
0 0
Itn 0
0 0
1 0

2 1L
3 5A
Itn Jdel
4 4A
5 3A
6 2A
7 1A
8 13L
Itn Jdel
9 10
10 0
11 14L
Exit from
Itn Jdel
0 0
1 2U
2 4U
3 6U
Itn 3
3 0
Itn Jdel
4 0
5 2A
6 1A
7 14L
Exit from

QPOPT --- Version 1.0-10 Sep 1995
Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
0 0.0E+00 0 0.00000000E+00 0.0E+00 0 6
-- Feasible point found.
0 0.0E+00 0 1.51638000E+03 9.8E+01 1 5
8U 2.8E-01 0 1.72380000E+02 0.0E+00 0 5
10L 3.1E-03 0 1.68083225E+02 0.0E+00 0 5
11L 1.2E-02 0 1.57176475E+02 0.0E+00 0 4
Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
12L 3.2E-02 0 1.38528925E+02 0.0E+00 0 3
13L 6.9E-02 0 1.11295925E+02 0.0E+00 0 2
14L 1.3E-01 0 7.41228000E+01 0.0E+00 0 1
1U 8.4E-01 0 -5.85162625E+01 0.0E+00 0 0
0 1.0E+00 0 -8.72144740E+01 1.3E-15 1 0
Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
6U 2.5E+00 0 -3.12744888E+02 1.4E+02 1 0
1L 1.4E-01 0 -5.62265012E+02 0.0E+00 0 0
70 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0
QP problem after 11 iterations. Inform = O
QPOPT --- Version 1.0-10 Sep 1995
Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
0 0.0E+00 3 2.35500000E+01 1.7E+00 0 3
10L 4.0E+00 2 1.96000000E+01 1.4E+00 0 3
12L 7.8E+00 1 1.17500000E+01 1.0E+00 0 3
14L 1.2E+01 0 0.00000000E+00 0.0E+00 0 3
-- Feasible point found.
0 0.0E+00 0 8.66526437E+02 1.5E+02 1 2
Jadd Step Ninf Sinf/Objective Norm gZ Zr Art
9L 1.0E-01 0 4.98244375E+01 0.0E+00 0 2
11L 4.5E-01 0 -5.62265013E+02 0.0E+00 0 1
6U 5.7E-13 0 -5.62265013E+02 0.0E+00 0 0
70 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0
QP problem after 7 iterations. Inform = O
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8. The Print File

The Print file records specified options, error messages, a detailed iteration log, and the final
solution. It is intended for output to a permanent file, but may be directed to the screen or
suppressed. The maximum record length is 114 characters.

By default, a Print file is produced on unit 9. In general, output is produced if Print
file > 0, PrintLevel > 0, and the file number is different from the Summary file.

To suppress the Print file, specify Print file 0 as the first option before or after a call
to gpopt. If an Options file is specified, Print file 0 must be the first option after the
begin (no blank lines).

8.1. Constraint numbering and status

Items Jdel and Jadd in the iteration log are the same as in the Summary file. Please see
Section 7.1.

8.2. The iteration log

When PrintLevel > 5, a line of output is produced at every iteration. The quantities
printed are those in effect on completion of the iteration. Several items are the same as in
the Summary file. Please see Section 7.2.

Itn Same as Summary file.
Jdel Same as Summary file.
Jadd Same as Summary file.
Step Same as Summary file.
Ninf Same as Summary file.

Sinf/0Objective Same as Summary file.

Bnd is the number of simple bound constraints in the current working set.
Lin is the number of general linear constraints in the current working set.
Art Same as Summary file.

Zr Same as Summary file. Zr = n — (Bnd + Lin + Art).

The number of columns of Z (see Section 2) can be calculated as Nz =
n— (Bnd + Lin) = Zr + Art. If Nz is zero, x lies at a vertex of the feasible

region.
Norm gZ Same as Summary file.
NOpt is the number of nonoptimal Lagrange multipliers at the current point.

NOpt is not printed if the current x is infeasible or no multipliers have
been calculated. At a minimizer, NOpt will be zero.

Min LM is the value of the Lagrange multiplier associated with the deleted con-
straint. If the Min LM is negative, a lower bound constraint has been
deleted, if Min LM is positive, an upper bound constraint has been deleted.
If no multipliers are calculated during a given iteration, Min LM will be
Zero.

Cond T is a lower bound on the condition number of the working-set matrix W.
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Cond Rz

Rzz

is a lower bound on the condition number of the triangular factor R (the
Cholesky factor of the current reduced Hessian Hp, whose dimension is
Zr). If the problem type is LP, Cond Rz is not printed.

is the last diagonal element w of the matrix D associated with the RT DR
factorization of the reduced Hessian Hy, (see Section 2). Rzz is only printed
if Hy is not positive definite (in which case w # 1). If the printed value
of Rzz is small in absolute value, then H, is approximately singular. A
negative value of Rzz implies that the objective function has negative
curvature on the current working set.

8.3. Printing the solution

When PrintLevel = 1 or PrintLevel > 10, the final output from gpopt includes a listing
of the status of every variable and constraint. Numerical values that are zero are printed as

W

n).

Variable

State

Value

Lower bound

. In the “Variables” section, the following output is given for each variable z; (j =1 to

gives j, the number of the variable.

gives the state of the variable. The possible states are as follows (see
Fig. 1), where ¢ is the Feasibility tolerance.

FR  The variable lies between its upper and lower bound.

EQ  The variable is a fixed variable, with z; equal to its upper and
lower bound.

LL  The variable is active at its lower bound (to within §).
UL  The variable is active at its upper bound (to within ¢).
TF  The variable is temporarily fixed at its current value.
--  The lower bound is violated by more than §.

++  The upper bound is violated by more than §.

A key is sometimes printed before the State to give some additional
information about the state of a variable.

A Alternative optimum possible. The variable is active at one of
its bounds, but its Lagrange multiplier is essentially zero. This
means that if the variable were allowed to start moving away from
its bound, there would be no change to the objective function. The
values of the other free variables might change, giving a genuine
alternative solution. However, if there are any degenerate variables
(labeled D), the actual change might prove to be zero, since one
of them could encounter a bound immediately. In either case, the
values of the Lagrange multipliers might also change.

D Degenerate. The variable is free, but it is equal to (or very close
to) one of its bounds.

I Infeasible. The variable is currently violating one of its bounds by
more than .

is the final value of the variable x;.

is the lower bound specified for z;. “None” indicates that bl(j) <
—bigbnd.
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Upper bound is the upper bound specified for x;. “None” indicates that bu(j) >
bigbnd.

Lagr multiplier is the Lagrange multiplier for the associated bound. This will be zero
if State is FR. If x is optimal, the multiplier should be non-negative if
State is LL, and non-positive if State is UL.

Slack is the difference between the variable “Value” and the nearer of its (fi-
nite) bounds b1(j) and bu(j). A blank entry indicates that the associated
variable is not bounded (i.e., b1(j) < —bigbnd and bu(j) > bigbnd).

In the “Constraints” section, similar output is given for each constraint alz, i = 1 to
nclin. The word “variable” must be replaced by “constraint”, and x; should be changed to
alz, and (j) should be changed to (nclin+i). “Movement off a constraint” means allowing

the entry in the slack column to become positive.

8.4. Interpreting the printout

The input data for gpopt should always be checked (even if it terminates with inform = 0!).
Two common sources of error are uninitialized variables and incorrectly dimensioned array
arguments. The user should check that all components of A, bl, bu and x are defined on
entry to gpopt, and that gpHess computes all relevant components of Hx.

In the following, we list the different ways in which qpopt terminates abnormally and
discuss what further action may be necessary.

Underflow A single underflow will always occur if machine constants are computed auto-
matically (as in the distributed version of QPOPT). Other floating-point un-
derflows may occur occasionally, but can usually be ignored.

Overflow If the printed output before the overflow error contains a warning about serious
ill-conditioning in the working set when adding the jth constraint, it may be
possible to avoid the difficulty by increasing the Feasibility tolerance. If
the message recurs, the offending linearly dependent constraint (with index “57)
must be removed from the problem. If a warning message did not precede the
fatal overflow, contact the authors.

inform = 3 The problem appears to have no feasible point. Check that there are no con-
flicting constraints, such as 1 > 1, o > 2 and z; + zo = 0. If the data
for the constraints are accurate to the absolute precision o, make sure that the
Feasibility tolerance is greater than o. For example, if all elements of A are
of order unity and are accurate to only three decimal places, the Feasibility
tolerance should be at least 1073.

inform =4 One of the iteration limits may be too small. (See Feasibility Phase and
Optimality Phase.) Increase the appropriate limit and rerun gpopt.

inform =5 The Maximum Degrees of Freedom is too small. Rerun gpopt with a larger
value (possibly using the warm start facility to specify the initial working set).

inform = 6 An input parameter is invalid. The printed output will indicate which param-
eter(s) must be redefined. Rerun with corrected values.

inform = 7 The specified problem type was not FP, LP, QP1, QP2, QP3, or QP4. Rerun gpopt
with Problem type set to one of these values.
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9. Example

This section describes an example QP problem, and shows how the Hessian may be coded
implicitly. It then gives a main program that calls gpopt (twice) to solve the problem, and
the Print files that are generated. The Summary file is shown in Section 7.

9.1. Definition of the example problem

The example problem is an indefinite quadratic program (see [BIK80]). It has eight variables
and seven general constraints. The vector ¢ and the Hessian H are given by

7 1.69 1 2 3 4 5 6 7
6 1 1.69 1 2 3 4 5 6
5 2 1 1.69 1 2 3 4 5
oo 4 and I — 3 2 1 1.69 1 2 3 4
3 4 3 2 1 1.69 1 2 3
2 5 4 3 2 1 1.69 1 2
1 6 5 4 3 2 1 1.69 1
0 7 6 5 4 3 2 1 1.69
The general constraint matrix A and bound vectors £ and u are
-1.0 1
—2.1 2
—3.2 3
—4.3 4
—5.4 -1 1 0 0 0 0 0 0 5
—6.5 0 -1 1 0 0 0 0 0 6
—7.6 0 0 -1 1 0 0 0 0 7
(= —-87 , A= 0 0 0 -1 1 0 0 0, u= 8 |,
—-1.0 0 0 0 0 -1 1 0 0 00
—1.05 0 0 0 0 0 -1 1 0 6]
—1.1 0 0 0 0 0 0 -1 1 00
—1.15 00
—-1.2 o0
—1.25 00
—-1.3 00

and the starting point (which is infeasible) is

xoz(—l 9 3 4 -5 —6 -7 —S)T.
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Three local minimizers are (to five figures)

9.2.

1 1 1
9 21 2

~3.05 315 1.880144

T | a3 ) 780144

TEL sa | T sa | ™ BT 360856

6 6 —1.569856

7 7 —2.819856

8 8 4119856

Implicit definition of H for the example problem

In the example main program, the problem is first solved with H defined explicitly using
the default version of gpHess. The problem is then solved again with H defined implicitly
by the following subroutine gpHes1. The name gpHes1 is passed as a parameter to gpopt.

* X X X X X X ¥

100

200

subroutine gqpHes1( n, 1dH, jthcol, H, x, Hx, iw, leniw, w, lenw )
implicit double precision(a-h,o0-z)
integer iw(leniw)

double precision  H(1dH,*), Hx(n), x(n)
double precision  w(lenw)

gpHes1 computes the vector Hx = (H)*x for some matrix H
that defines the Hessian of the required QP problem.

In this version of gpHess the Hessian matrix is implicit.
The array H is not accessed. There is no special coding
for the case jthcol .gt. O.

do 200, i =1, n
sum = 1.69d+0%x (i)
do 100, j =1, n
sum = sum + dble( abs(i-j) )*x(j)
continue
Hx(i) = sum
continue

end of gpHesl
end



32 User’s Guide for QPOPT

9.3. Main program for the example problem

i o
File gpmain.f

Sample program for QPOPT Version 1.0-10  Sept 1995.

* X ¥ X *

s T T S B o o S R G S N o S S S A A

program gpmain
implicit double precision (a-h,o-z)
* Set the declared array dimensions.
* 1dH = the declared row dimension of H.
* 1dA = the declared row dimension of A.
* maxn = maximum no. of variables allowed for.
* maxbnd = maximum no. of variables + linear constraints.
* leniw = the length of the integer work array.
* lenw = the length of the double precision work array.
parameter ( 1aH = 8, 1dA = 7,
$ maxn = 8,
$ leniw = 20, lenw = 500,
$ maxbnd = maxn + 1dA )
integer istate (maxbnd)
integer iw(leniw)
double precision  H(1dH,maxn)
double precision  bl(maxbnd), bu(maxbnd), clamda(maxbnd)
double precision  cvec(maxn)
double precision A(1dA,maxn), Ax(1dA), x(maxn)
double precision  w(lenw)
external qpHess, qpHesl
double precision  bigbnd
character*20 1File
logical byname, byunit
parameter ( pointl = 0.1d+0, zero = 0.0d+0, one = 1.0d4+0 )
*
* Assign file numbers and open files by various means.
* (Some systems don’t need explicit open statements.)
* i0Optns = unit number for the Options file.
* iPrint = unit number for the Print file.
* iSumm = unit number for the Summary file.
*
iOptns = 4
iPrint = 10
iSumm = 6
byname = .true.

byunit = .false.
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* X X X X ¥

* XK X X X X

120

150

200

220

if ( byname ) then
1File = ’qpopt.opt’
open( iOptns, file=1File, status=’0LD’, err=800 )

1File = ’gpopt.out’
open( iPrint, file=1File, status=’UNKNOWN’, err=800 )

else if ( byunit ) then
1Unit = iOptns
open( 1Unit, status=’0LD’, err=900 )

1Unit = iPrint
open( 1Unit, status=’UNKNOWN’, err=900 )
end if

Set the actual problem dimensions.
n = the number of variables.
nclin the number of general linear constraints (may be 0).
bigbnd = the Infinite Bound size.

n 8
nclin =7
1.

bigbnd = 1.0d+21

Define H, A, bl, bu, cvec and the initial x.

This example is due to Bunch and Kaufman,

‘A computational method for the indefinite quadratic programming
problem’, Linear Algebra and its Applications, 34, 341-370 (1980).

do 200, j =1, n
do 120, i = 1, nclin
A(i,j) = zero
continue

do 150, i =1, j-1
H(i,j) = abs(i - j)
continue

H(j,j) = 1.69d+0

bl(j) = - j - pointlxdble(j - 1)
bu(j) = j
cvec(j) = dble(8 - j)
x(j) = - dble(j)
continue

do 220, i = 1, nclin

A(i,1) - one
A(i,i+1) = one
bl(n+i) = - one - 0.05d+0*dble(i - 1)
bu(n+i) =  bigbnd
continue
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Set a few options in-line.

The Print file will be on unit iPrint.

The Summary file will be on the default unit 6
(typically the screen).

* X X X X ¥

call gpprmi( ’Print file =’, iPrint )
call gpprmr( ’Infinite Bound size =’, bigbnd )

* Read the Options file.

call gpprms( iOptns, inform )

if (inform .ne. 0) then
write(iPrint, 3000) inform
stop

end if

Solve the QP problem.

* ¥ ¥

call gpopt ( n, nclin, 1dA, 14dH,
A, bl, bu, cvec, H, gpHess,
istate, x,
inform, iter, obj, Ax, clamda,
iw, leniw, w, lenw )

©“ BH B D

* Test for an error condition.

if (inform .gt. 1) go to 999

Re-solve the problem with the Hessian defined by a subroutine.

* Set some new options in-line,
but stop listing them on the Print file.

call gpprm ( ’Nolist’

call gpprm ( ’Problem Type QP2’°

call gpprm ( ’Feasibility Tolerance = 1.0e-10’
call gpprmr( ’Optimality tolerance ’, 1.0d-5
call gpprmi( ’Print level ’, 10

NN N
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800

900

999

3000
3010
4000
4010

Define a new starting point.

x(1) = -1.0
x(2) = 12.0
x(3) = -3.0
x(4) = 14.0
x(6) = -5.0
x(6) = 16.0
x(7) = -7.0
x(8) = 18.0

call gpopt ( n, nclin, 1dA, 1dH,
A, bl, bu, cvec, H, gpHesl,
istate, x,
inform, iter, obj, Ax, clamda,
iw, leniw, w, lenw )

©® BH BH B

if (inform .gt. 1) go to 999
stop

Error conditions.

write(iSumm , 4000) ’Error while opening file’, 1lFile
stop

write(iSumm , 4010) ’Error while opening unit’, 1lUnit
stop

write(iPrint, 3010) inform

stop

format(/ > QPPRMS terminated with inform =’, i3)
format(/ > QPOPT terminated with inform =’, i3)

format(/ a, 2x, a )
format(/ a, 2x, i6 )

end of the example program for QPOPT
end
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9.4.

Print file from the example problem

Optional Parameters

QPOPT --- Version 1.0-10 Sep 1995

Parameters

Problem type........... QP2

Linear constraints..... 7 Cold start.............

Variables.............. 8 Infinite bound size.... 1.00E+21

Hessian rows........... 8 Infinite step size..... 1.00E+21

Check frequency........ 50 Expand frequency.......

Max degrees of freedom. 8 Max active constraints.

Max free variables..... 8

Print level............ 5 Print file.............

Unit round-off......... 1.11E-16  Summary file...........

Workspace provided is iw( 20), w( 500)

To solve problem we need iw( 19), w( 227)

Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art Bnd
0 0 0 0.0E+00 0 0.00000000E+00 0.0E+00 0 6 1

Itn 0 -- Feasible point found.
0 0 0 0.0E+00 0 1.51638000E+03 9.8E+01 1 5 1
1 0 8U 2.8E-01 0 1.72380000E+02 0.0E+00 0 5 2
2 1L 10L 3.1E-03 0 1.68083225E+02 0.0E+00 0 5 1
3 5A 11L 1.2E-02 0 1.57176475E+02 0.0E+00 0 4 1
4 4A 121 3.2E-02 0 1.38528925E+02 0.0E+00 0 3 1
5 3A  13L 6.9E-02 0 1.11295925E+02 0.0E+00 0 2 1
6 2A  14L 1.3E-01 0 7.41228000E+01 0.0E+00 0 1 1
7 1A 1U 8.4E-01 0 -5.85162625E+01 0.0E+00 0 0 2
8 13L 0 1.0E+00 0 -8.72144740E+01 1.3E-15 1 0 2
9 1U 6U 2.5E+00 0 -3.12744888E+02 1.4E+02 1 0 2
10 0 1L 1.4E-01 0 -5.62265012E+02 0.0E+00 0 0 3
11 14L 70 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0 4

Exit QPOPT - Optimal QP solution.

Final QP objective value = -621.4878

Exit from QP problem after 11 iterations. Inform = 0

Print file = 10
Infinite Bound size = 1.00000000E+21
Begin optional parameters read from a file

Optimality phase iterations 50
Feasibility phase iterations 50
Print level 5

End of optional parameters read from a file

Lin
1

OO OTOo 0O WN

Min. Sum of Infeas.....
Feasibility tolerance..
Optimality tolerance...
Crash tolerance........
Rank tolerance.........

Feasibility phase itns.
Optimality phase itns.

NOpt Min Lm

1.E+00

1.E+00

1.E+00
7 -8.61E+01 1.E+00
5 6.33E+01 1.E+00
4 6.32E+01 1.E+00
3 6.31E+01 1.E+00
3 6.48E+01 1.E+00
4 6.94E+01 1.E+00
6 -1.76E+01 1.E+00
2 1.03E+02 1.E+00

1.E+00
1 -2.82E+01 1.E+00

No
1.05E-08
1.72E-13
1.00E-02
1.11E-14

50
50

Cond T Cond Rz

1.0E+00

1.0E+00
1.0E+00

Rzz
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QPOPT --- Version 1.0-10 Sep 1995

Parameters
Problem type........... QP2
Linear constraints..... 7 Cold start............. Min. Sum of Infeas..... No
Variables.............. 8 Infinite bound size.... 1.00E+21 Feasibility tolerance.. 1.00E-10
Hessian rows........... 8 Infinite step size..... 1.00E+21 Optimality tolerance... 1.00E-05
Check frequency........ 50 Expand frequency....... 5 Crash tolerance........ 1.00E-02
Max degrees of freedom. 8 Max active constraints. 7 Rank tolerance......... 1.11E-14
Max free variables..... 8
Print level............ 10 Print file............. 10 Feasibility phase itns. 50
Unit round-off......... 1.11E-16  Summary file........... 6 Optimality phase itns. 50
Workspace provided is iw( 20), w( 500) .
To solve problem we need iw( 19), w( 227) .
Itn Jdel Jadd Step Ninf Sinf/Objective Norm gZ Zr Art Bnd Lin NOpt Min Lm Cond T Cond Rz Rzz

0 0 0 0.0E+00 3 2.35500000E+01 1.7E+00 0 3 5 0 1.E+00

1 2U 10L 4.0E+00 2 1.96000000E+01 1.4E+00 0 3 4 1 1.00E+00 1.E+00

2 4U  12L 7.8E+00 1 1.17500000E+01 1.0E+00 0 3 3 2 1.00E+00 1.E+00

3 6U  14L 1.2E+01 0 0.00000000E+00 0.0E+00 0 3 2 3 1.00E+00 1.E+00
Itn 3 -- Feasible point found.

3 0 0 0.0E+00 0 8.66526437E+02 1.5E+02 1 2 2 3 1.E+00 1.0E+00

4 0 9L 1.0E-01 0 4.98244375E+01 0.0E+00 0 2 2 4 2.E+00

5 2A 11L 4.5E-01 0 -5.62265013E+02 0.0E+00 0 1 2 5 5 -6.86E+01 2.E+00

6 1A 6U 5.7E-13 0 -5.62265013E+02 0.0E+00 0 0 3 5 2 -2.20E+01 2.E+00

7 14L 70 1.3E-01 0 -6.21487825E+02 0.0E+00 0 0 4 4 1 -2.82E+01 2.E+00
Variable State Value Lower bound Upper bound Lagr multiplier Slack
variable 1 LL  -1.000000 -1.000000 1.000000 304.4550 .
variable 2 FR  -2.000000 -2.100000 2.000000 . 0.1000
variable 3 FR  -3.050000 -3.200000 3.000000 . 0.1500
variable 4 FR  -4.150000 -4.300000 4.000000 . 0.1500
variable 5 FR  -5.300000 -5.400000 5.000000 . 0.1000
variable 6 UL 6.000000 -6.500000 6.000000 -0.6100000
variable 7 UL 7.000000 -7.600000 7.000000 -24.42000
variable 8 UL 8.000000 -8.700000 8.000000 -34.23000
Linear constrnt State Value Lower bound Upper bound Lagr multiplier Slack
lincon 1 LL  -1.000000 -1.000000 None 212.8950 .
lincon 2 LL  -1.050000 -1.050000 None 131.5250 0.2220E-15
lincon 3 LL  -1.100000 -1.100000 None 64.42950 -0.4441E-15
lincon 4 LL  -1.150000 -1.150000 None 17.79300 -0.4441E-15
lincon 5 FR 11.30000 -1.200000 None . 12.50
lincon 6 FR 1.000000 -1.250000 None . 2.250
lincon 7 FR 1.000000 -1.300000 None . 2.300

Exit QPOPT - Optimal QP solution.
Final QP objective value = -621.4878

Exit from QP problem after 7 iterations. Inform = O
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