
DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2018071
DYNAMICAL SYSTEMS SERIES S
Volume 11, Number 6, December 2018 pp. 1259–1282

A STUDY OF STRUCTURE-EXPLOITING SQP ALGORITHMS

FOR AN OPTIMAL CONTROL PROBLEM WITH COUPLED

HYPERBOLIC AND ORDINARY DIFFERENTIAL

EQUATION CONSTRAINTS

Jan-Hendrik Webert

Institut für Mathematik und Rechneranwendung (LRT-1)

Universität der Bundeswehr München
Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany

Philip E. Gill

Center for Computational Mathematics
University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093-0112, USA

Sven-Joachim Kimmerle∗

Institut für Mathematik und Rechneranwendung (LRT-1)
Universität der Bundeswehr München

Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany

Matthias Gerdts

Institut für Mathematik und Rechneranwendung (LRT-1)

Universität der Bundeswehr München
Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany

Abstract. In this article, structure-exploiting optimisation algorithms of the

sequential quadratic programming (SQP) type are considered for optimal con-
trol problems with control and state constraints. Our approach is demonstrated

for a 1D mathematical model of a vehicle transporting a fluid container. The

model involves a fully coupled system of ordinary differential equations (ODE)
and nonlinear hyperbolic first-order partial differential equations (PDE), al-

though the ideas for exploiting the particular structure may be applied to more

general optimal control problems as well. The time-optimal control problem is
solved numerically by a full discretisation approach. The corresponding nonlin-
ear optimisation problem is solved by an SQP method that uses exact first and
second derivative information. The quadratic subproblems are solved using an
active-set strategy. In addition, two approaches are examined that exploit the

specific structure of the problem: (A) a direct method for the KKT system,
and (B) an iterative method based on combining the limited-memory BFGS

method with the preconditioned conjugate gradient method. Method (A) is
faster for our model problem, but can be limited by the problem size. Method
(B) opens the door for a potential extension of the truck-container model to
three space dimensions.

2010 Mathematics Subject Classification. Primary: 49J15, 49J20, 90C53, 90C55; Secondary:
35Q35, 35L04, 49N90.

Key words and phrases. ODE-PDE constrained optimisation, SQP method, Limited-Memory-

BFGS method, Saint-Venant equations, shallow water equations, fully coupled ODE-PDE system,

Lax-Friedrichs scheme, hyperbolic conservation law.
∗ Corresponding author: Sven-Joachim Kimmerle.

1259

http://dx.doi.org/10.3934/dcdss.2018071

1260 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

1. Introduction. Optimal control problems arise in various contexts, such as eco-
nomics, biology or engineering. The dynamic behaviour of these systems is often
subject to constraints and can be influenced by control variables. In this article, a
mechanical system of a truck with a container as a load is considered. By means of
optimal control, the control of the mechanical system for the performance of certain
predefined manoeuvres is to be determined. The truck-container system is modeled
mathematically as a set of fully coupled ODEs and PDEs. The dynamics of the
truck are described by the Lagrangian equations, whereas the motion of the fluid is
characterised by the shallow water equations.

The mathematical model has been developed in [7]. Herein, the optimal con-
trol problems were solved numerically by an adjoint-based direct shooting method.
In [10] the same problem is revisited using a first-optimise-then-discretise approach.
In this study we follow a first-discretise-then-optimise approach in which we exploit
the specific structure of the fully discretised optimisation problem. This article is
based on work completed as part of Jan-Hendrik Webert’s M.Sc. thesis [15]. Direct
discretisation of the optimal control problem yields a nonlinear finite-dimensional
optimisation problem which is large-scale and exhibits a sparse structure. Although
software (commercial and non-commercial) for the solution of optimisation problems
that exhibit this structure, such as SNOPT, IPOPT or WORHP, is available, this article
focuses on the implementation and evaluation of alternative algorithms. In a first
step, the structure of the discretised optimal control problem of the truck-container
system is analysed. Exact first and second derivatives, such as the Jacobian of the
constraints and the Hessian of the Lagrangian are derived analytically and exploited
in the solution process. In a second step, two solution approaches are implemented,
adjusted to the specific characteristics of the problem and tested in numerical ex-
periments. Both approaches employ the sequential quadratic programming (SQP)
method, where the resulting quadratic programs (QP) are solved with an active-set
strategy. The main effort in the solution process involves the solution of large and
sparse systems of linear equations, the so-called KKT systems. The first method
relies on the direct solution of the KKT systems with exact second derivatives and
MA57, a well-known solver for large and sparse systems. For the second method, a
block-elimination approach, the so-called range-space method, is chosen. Exact sec-
ond derivatives are replaced by a Limited-Memory-BFGS approximation (cf. [11])
and the resulting linear systems are solved with a preconditioned conjugate gra-
dient method. We emphasise that our structure exploitation methods may apply
well to other optimal control problems with control and state constraints, though
we present our approach in this study on the basis of the aforementioned truck-
container problem.

This study is structured as follows: after a brief introduction to the mathemati-
cal model of the truck-container system, the nonlinear optimisation problem to be
solved is formulated. Furthermore, the exact first and second derivatives associated
with the optimisation problem are given in this section. Section 3 describes the
model verification process with the optimisation software package SNOPT and the
analysis of certain influential model parameters. In Section 4, both solution tech-
niques mentioned above are outlined in detail, including implementational details.
Computational results are presented in Section 5, before we close with a discussion.

2. Mathematical model with coupled hyperbolic and ordinary differential
equations. The technical application that is subject to optimal control in this
article is a truck-container system, performing certain driving manoeuvres. Being

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1261

part of a technical system in motion, the fluid in the container develops its own
dynamics, which in turn has an impact on the whole system. In combination with
spring-damper elements, unwanted and potentially harmful oscillations can occur.
By means of optimal control, the manoeuvering performance of the truck-container
system can be improved, for example by reducing braking times or preventing fluid
overflow, whilst maintaining the safe operability of the technical system.

In the following two subsections we briefly review the optimal control problem
for the truck-container system described in [7].

2.1. Mathematical model. We consider a truck with a container containing a
fluid, which is linked to the truck by a spring-damper connection, as depicted in
Figure 1. The truck, modeled as a point mass of mass mT , can move in the hor-
izontal direction d and is controlled by a time-dependent force u(t), representing
acceleration or deceleration. The distances travelled by the truck and the fluid con-
tainer in the (X,Z) reference system are denoted by dT and dW and their velocities

by ḋT and ḋW , respectively. The function b(x) characterises the bottom surface

dW
dT
L

Z

X

b(x)

b(x) + h(t, x)
h

x

k

c
u

Figure 1. Model of the truck and fluid tank, cf. [7].

of the fluid container for 0 ≤ x ≤ L, L being the length of the container. Both
the height of the fluid column h(t, x) and the horizontal fluid velocity v(t, x) in the
moving coordinate system (x, h) obey the Saint-Venant-equations (shallow water
equations). The overall mass of the container is given by

mW = ρ̂W

∫ L

0

(h0(x) + b(x)) dx,

where h0(x) is the initial height of the fluid column and ρ̂W
[
kg/m2

]
is the mass of

the fluid per area. The grey area in Fig. 1 below b(x) is assumed to have the same
density as the fluid. For simplicity, the container itself is assumed to have no mass.

Truck dynamics. The motion of the truck is characterised by a set of ordinary differ-
ential equations. Let T denote the final time. Applying the horizontal equilibrium
of forces to the masses mT and mW and neglecting any friction terms yields the
equations

mT d̈T = u− F, t ∈ (0, T), (2.1a)

mW d̈W = F +mWaW , t ∈ (0, T), (2.1b)

where F is the spring damper force and aW the average acceleration of the fluid in
the container. The spring-damper force, which obeys the linear spring and damper

1262 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

force laws, is given by

F (dT , dW , ḋT , ḋW) = c(dT − dW + d) + k(ḋT − ḋW), (2.2)

with the constant spring stiffness c
[
N/m

]
and the damper force constant k

[
Ns/m

]
.

Furthermore, the mean acceleration of the fluid, aW , is given by

aW =
1

L

∫ L

0

vt(t, x) dx, (2.3)

where vt(t, x) denotes the horizontal acceleration at the point (t, x).

Shallow water equations. Fluid motion is generally described by the Navier-Stokes
equations. Assuming that horizontal scales are much larger than vertical scales and
neglecting 3D effects in the fluid motion, these equations can be simplified signifi-
cantly, thereby reducing complexity and computational effort, whilst still conveying
the desired information. The fluid is supposed to be incompressible. In this article
the fluid is assumed to be water. For h > 0 the resulting shallow water equations
(SWE) may be written as

ht + (hv)x = 0, (t, x) ∈ Ω, (2.4a)

vt +
(1

2
v2 + gh

)
x

= −gbx −
F

mW
, (t, x) ∈ Ω, (2.4b)

where Ω := (0, T)× (0, L) and g is the gravity acceleration. The right-hand side in
(2.4b) models a non-straight bottom geometry b(x) [14, pp. 3-4] and the acceleration
of the fluid container due to the coupling force F (t). It must be noted that the
fluid-level in the coordinate system (x, h) is b(x)+h(t, x). The initial and boundary
conditions for the SWE (2.4) are given by

h(0, x) = h0(x), v(0, x) = v0(x), x ∈ [0, L],

v(t, 0) = 0, v(t, L) = 0, t ∈ [0, T],

and it is assumed that

h ≤ h(t, x) ≤ h with 0 < h < h < H(x), (2.5)

where h and h are given numbers and H(x) is the wall height of the tank. For
compatibility, h0(x) must also satisfy (2.5). As the fluid cannot penetrate the tank
wall, we have

v(t, 0) = v(t, L) = 0, t ∈ [0, T], (2.6)

and it follows that vt ≡ 0 at the left and right boundary of the tank. Exploiting
this information in Equation (2.4b), boundary conditions for h can be obtained at
the boundary points xe = 0 and xe = L, respectively:

hx(t, xe) = −bx(xe)−
1

gmW
F
∣∣∣
t
, t ∈ [0, T].

Solving (2.4b) for vt and inserting the resulting expression into the integral in (2.3),
the mean fluid acceleration simplifies to

aW (t) = − g
L

(b(L)− b(0))− F

mW
− g

L
(h(t, L)− h(t, 0)) ,

where (2.6) was exploited. The expression for aW can be inserted in (2.1b) to yield

mW d̈W = −mW
g

L
[b(x) + h(t, x)]x=Lx=0 , t ∈ (0, T), (2.7)

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1263

where the spring damper force F cancels out. In summary, the technical system
considered in this study is characterised by a set of fully coupled ODEs and PDEs.
In the following, the ODEs are transformed to a first-order system by introducing
the variables ηT := ḋT and ηW := ḋW .

2.2. The optimal control problem. With the set of differential equations de-
scribing the truck and fluid motion available, we can pose an optimal control prob-
lem for the truck motion from a given initial state to a terminal state. The initial
state is characterised by the initial position and velocity of the truck dT (0) = 0

and ḋT (0) = η̃0T and of the fluid container dW (0) = d̃0W and ḋW (0) = η̃0W . For the

terminal state, the truck and the container position are given by dT (T) = d̃TT and

dW (T) = d̃TW with the free final time T and the given scalars η̃0T , d̃0W , η̃0W , d̃TT , and

d̃TW .
The objective function J to be minimised is composed of a sum of several func-

tions, where each summand is weighted with a non-negative constant αi:

J =α0T + α1

∫ T

0

∫ L

0

(h(t, x)− hd(x))
2
dx dt+ α2

∫ T

0

u(t)2

m2
T

dt

+ α3

(
|ηT (T)− η̃TT |2 + |ηW (T)− η̃TW |2

)
.

Here the summands to be minimised are: the final time T , the deviation from a given
(constant) fluid-level hd, the control effort, and the deviation of the terminal truck
and container velocities from given terminal velocities η̃TT and η̃TW . If η̃TT = η̃TW = 0,
a braking manoeuvre is performed, where truck and container have come to a halt
after the time T and given distance. To ensure that the acceleration and deceleration
of the truck is limited, we impose bounds on the control

uL ≤ u(t) ≤ uR with uL < uR.

Furthermore, to prevent fluid overflow the fluid-level must not reach the upper rim
of the tank. Fluid overflow would imply a reduction in mass, which is not included
in the mathematical model. In addition, the shallow water equation model requires
the bottom of the tank to be covered everywhere with fluid. These restrictions are
enforced by the constraint (2.5) bounding the fluid column height.

The domain Ω contains the free end time T , which is not known a priori. Fur-
thermore, T appears in the bounds of the objective function integrals. For the
numerical solution of the problem, it is convenient to consider a domain with a
fixed time horizon Ω̃ := (0, 1)× (0, L). This can be achieved by means of the time
transformation t(τ) = τT with τ ∈ [0, 1], where T is considered as an additional
optimisation variable. All time dependent expressions, including ODEs, PDEs, and
the objective function, must to be transformed. For example, in the transformed
equations there is an additional multiplicative factor 1/T associated with each of
the time derivatives, and the integrations for J are performed from 0 to 1, while dt
is scaled by the multiplicative factor T . For improved readability, the normalised
time τ is denoted again by t in the following.

2.3. Discretisation. The domain Ω̃ is discretised by an equidistant grid in space
and time

xi = i∆x, i = 0, . . . ,M, tj = j∆t, j = 0, . . . , N,

with ∆x = L/M and ∆t = 1/N , respectively. The continuous state and control
variables are approximated by discrete functions defined on the grid, e.g., uj ≈ u(tj)

1264 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

for all j = 0, . . . , N − 1. Similarly, we introduce djT , djW , ηjT , ηjW , hji , and vji for
i = 0, . . . ,M and j = 0, . . . , N . We define the vector of discretised state variables

q =
[
q0, q1, . . . , qN

]> ∈ R(N+1)(6+2M), (2.8)

where qj = [djT , d
j
W , η

j
T , η

j
W , h

j
0, . . . , h

j
M , v

j
0, . . . , v

j
M] ∈ R6+2M , and the vector of the

discretised control and final time

w =
[
u0, . . . , uN−1, T

]> ∈ RN+1. (2.9)

Finally, the vector z is defined by z = [q, w]
>

.
In order to rewrite the optimal control problem (OCP) as a nonlinear program

(NLP), the dynamic constraints corresponding to the ODE and PDE must be dis-
cretised. Various discretisation methods can be applied. For the discretisation of
the ODE, the explicit Euler method was chosen. The shallow water equations can
be discretised, for example, with the Lax-Friedrichs (LF) method or the Godunov
scheme, both discretisation schemes being suitable for the approximation of hyper-
bolic conservation laws, such as the shallow water equations. For the discretisation
of the PDE in this study, the LF method was chosen. The LF scheme exhibits some
desirable properties, as it is consistent, conservative, and monotone [2]. Approxi-
mating the original conservation law with the LF method is equivalent to solving
the original equation with an artificial diffusion term. This property is referred to
as numerical dissipation or numerical viscosity, which reduces undesired oscillations
of the numerical solution. The artificial diffusion term guarantees a unique solution,
whereas hyperbolic conservation laws have, in general, no unique solution without
imposing further so-called entropy conditions that follow from physical principles.
Furthermore, the solution obtained in the limit of vanishing numerical viscosity also
satisfies the entropy condition.

For the LF scheme it is necessary and sufficient for convergence that the Courant-
Friedrichs-Lewy (CFL) condition is satisfied. Informally speaking, the space and
time grids must be harmonised so that the duration between two neighbouring time
gridpoints is less than the time needed by the wave to travel from one time gridpoint
to an other. For our problem, it was found experimentally in [7, Ch. 3] that the
CFL condition implies 30∆t ≈ ∆x/L and N ≈ 30M for the time and space grids.

The discretised differential equations may be written in the form

qj+1 = qj + ∆tΦj(qj , uj , T),

where we introduce the increment function Φj by

ΦjdT = TηjT , ΦjdW = TηjW , ΦjηT =
T

mT

(
uj − F j

)
,

ΦjηW =
−gT
L

(
[b(x)]x=Lx=0 −∆x(bx(L) + bx(0)) + hjM−1 − h

j
1 −

2∆x

gmW
F j
)
,

Φi,jh =
−T
2∆x

(
hji+1v

j
i+1 − h

j
i−1v

j
i−1

)
,

Φi,jv =
−T
2∆x

(
1

2
(vji+1)2 + ghji+1 −

1

2
(vji−1)2 − ghji−1

)
+ T

(
−gbx(xi)−

1

mW
F j
)
.

Here we have abbreviated F j = c(djT − d
j
W + d) + k(ηjT − η

j
W). For the Neumann

boundary conditions in h we use the notation

Ψj
e(d

j
T , d

j
W , η

j
T , η

j
W) = ∆x

(
bx(xe) +

1

gmW
F j
)
,

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1265

where the index e = l stands for the left boundary at xe = 0 and e = r for xe = L,
respectively. Approximating the time and space derivatives with the LF-method
yields the discretised differential equations

C(z) = 0 ∈ RN(4+2M)+2 (2.10)

with

C =

C0

C1

...
CN−1

HN
r

 , whereCj =

djT + ∆tΦjdT − d
j+1
T

djW + ∆tΦjdW − d
j+1
W

ηjT + ∆tΦjηT − η
j+1
T

ηjW + ∆tΦjηW − η
j+1
W

1
2 (hj2 + hj0) + ∆tΦ1,j

h − h
j+1
1

...
1
2 (hjM + hjM−2) + ∆tΦM−1,jh − hj+1

M−1
1
2 (vj2 + vj0) + ∆tΦ1,j

v − v
j+1
1

...
1
2 (vjM + vjM−2) + ∆tΦM−1,jv − vj+1

M−1
hj0 −∆xΨj

l − h
j
1

hjM−1 −∆xΨj
r − h

j
M

∈ R4+2M ,

i.e., a subset of 4 + 2M constraints with time index j = 0, . . . , N −1. The term HN
r

equals the last two constraints in Cj but with the time index N . As it was done for
the vector of the nonlinear equality constraints, the vector of the linear boundary
conditions

B(z) = 0 ∈ R2(M+N)+8 (2.11)

is sorted by the time index of the variables. We obtain B =
[
B0, B1, . . . , BN

]>
,

where

B0 =

d0T
d0W − d̃0W
η0T − η̃0T
η0W − η̃0W
h01 − h0(x1)

...
h0M−1 − h0(xM−1)

v00
v01 − v0(x1)

...
v0M−1 − v0(xM−1)

v0M

, Bj =

[
vj0
vjM

]
, j = 1, . . . , N − 1, BN =

vN0
vNM

dNT − d̃TT
dNW − d̃TW

 .

The box constraints for control u and the state h, in ascending time order, are

G(z) ≤ 0 ∈ R2N(M+2) (2.12)

1266 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

with G =
[
G0, . . . , GN

]>
, where

G0 =

[
u0 − uR
−u0 + uL

]
, Gj =

uj − uR
−uj + uL
hj0 − h

...

hjM − h
−hj0 + h

...

−hjM + h

,

, j = 1, . . . , N − 1, GN =

hN0 − h
...

hNM − h
−hN0 + h

...
−hNM + h

.

Furthermore, the tracking-type term integral is approximated by the trapezoidal
rule. Thus, in the following, we abbreviate ω0 = ωM = 1/2 and ωi = 1, i =
1, . . . ,M . In addition, we add a regularization term for the variation of the control
with a weight factor α4 ≥ 0. The reasons for this modification will be explained in
Section 3.

Finally, for further details we refer to [15]. Our fully discretised optimal control
problem reads:

Minimise

J̃ =α0T +
α1T∆t∆x

2

N−1∑
j=0

M∑
i=0

ωi

(
hji − hd(xi)

)2
+
α2T∆t

2m2
T

N−1∑
j=0

(
uj
)2

+
α3

2

(
|ηNT − η̃TT |2 + |ηNW − η̃TW |2

)
+
α4T∆t

2m2
T

N−2∑
j=0

(
uj+1 − uj

∆t

)2

with respect to z ∈ R(N+1)(7+2M), subject to the general constraints (2.10), the
initial and boundary conditions (2.11), and the box constraints (2.12).

2.4. Derivation of the Hessian and the Jacobian. The constraints in the NLP
given above can be divided into three classes: The vector C(z) contains the mostly
nonlinear equality constraints, whereas the linear boundary conditions and linear
box constraints are found in the vectors B(z) and G(z), respectively. We calculate
the dimension of the NLP for given discretisations fulfilling the CFL condition. For
M = 20, N = 600, we find that the number of optimisation variables is nz = 28247
and the number of equality constraints is neq = 27650. For M = 50, N = 1500,
we have nz = 160607 and neq = 159110. Thus nz is greater than neq, which
is important for the solvability of the formulated NLP, as the number of degrees
of freedom is greater than zero. The algorithms used for nonlinear optimisation
problems require first and second derivatives, i.e., the Jacobian of the constraints
and the Hessian of the Lagrangian.

Jacobians C ′(z) and B′(z). The derivation of the Jacobian of the nonlinear con-
straints, C ′(z), requires a structural approach. We note that the constraints in the
vector C(z) are sorted by time index j. The main part of the Jacobian is made up
of sparse block matrices on its diagonal. Using the notation for C(z) introduced
above, the symbolic Jacobian

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1267

C ′(z) =

∂C0

∂q0
∂C0

∂q1 0 0 ∂C0

∂u
∂C0

∂T

0 ∂C1

∂q1
∂C1

∂q2 0 . . . 0 ∂C1

∂u
∂C1

∂T
... 0

. . .
. . .

. . .
...

...
...

...
...

. . .
. . .

. . .
...

...
...

0 0 . . . 0 ∂CN−1

∂qN−1
∂CN−1

∂qN
∂CN−1

∂u
∂CN−1

∂T

0 0
∂HN

r

∂qN
0 0

(2.13)

is obtained. The vertical line indicates the formal distinction between the state vari-
ables (dT , dW , ḋT , ḋW , h, v) and the control variables (u, T) of the original optimal
control problem. However, in the solution process of the NLP there is no difference
between state and control variables, since all optimisation variables are contained
in the vector z of optimisation variables. The quotient

ηJ =
number of nonzero entries

number of entries
=

N(19 + 16M) + 12

(N + 1)(7 + 2M)(N(4 + 2M) + 2)

is a measure of the sparsity of the Jacobian. For N = 600, M = 20 we obtain
ηJ ≈ 0.000273 = 0.0273%.

Differentiating the sorted vector B(z) with respect to z yields the symbolic Ja-
cobian

B′(z) =

∂B0

∂q0 0 0 0 0

0 ∂B1

∂q1 0 . . . 0 0 0
... 0

. . .
. . .

...
...

...
...

...
. . .

. . . 0
...

...

0 0 . . . 0 ∂BN

∂qN
0 0

,

where each matrix ∂Bi/∂qi, i = 0, . . . , N , has unit or zero vectors as columns.

Hessian ∇zzL. We assemble the Lagrange function

L(z, λ, ν, µ) = J̃ +

N(4+2M)+2∑
k=1

λkC(z)k +

2(M+N)+8∑
k=1

νkB(z)k +

2N(M+2)∑
k=1

µkG(z)k

(2.14)
of the NLP, where the constraints are coupled to the objective function by un-
known numbers λk, νk, and µk, the so-called Lagrange multipliers. Differentiating
L twice with respect to z yields non-zeros for the objective function and nonlinear
constraints only. Thus the linear boundary conditions and box constraints B(z) = 0
and G(z) ≤ 0 will not appear in the Hessian. The Hessian of the Lagrangian with
respect to z

∇zzL(z, λ, µ) =

∇q0,q0L 0 . . . 0 0 ∇q0,TL

0 ∇q1,q1L 0
...

... ∇q1,TL
... 0

. . .
. . .

...
...

...
...

. . . ∇qN ,qNL 0 ∇qN ,TL
0 0 . . . 0 ∇u,uL ∇u,TL

∇T,q0L ∇T,q1L . . . ∇T,qNL ∇T,uL 0

, (2.15)

1268 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

referred to as H in what follows, is symmetric and exhibits a sparse structure with
sparse blocks on its main diagonal and a dense last row and column vector. Similar
to ηJ we consider the quotient

ηH =
number of nonzero entries

number of entries
=

N(8M + 21)

(N + 1)2(7 + 2M)2
(2.16)

as a measure of the sparsity of the Hessian. For N = 600, M = 20 we obtain
ηH ≈ 0.000136 = 0.0136%.

The detailed sparsity structure and the values of C ′, B′, and H are provided
in [15, Appendix C]. We note that we work with a coordinate storage format for
sparse matrices.

3. Model verification. In order to verify the fully discretised model with the ex-
act Jacobian, the formulation has been implemented in SNOPT, a general-purpose
software package for large-scale nonlinear programming. It employs an SQP method,
solving the QP subproblems with a reduced-Hessian active-set method. Thus, the
exact Hessian does not have to be provided by the user. For further documentation,
see [9].

Various numerical experiments on the NLP posed in Section 2.3 have been con-
ducted with SNOPT to examine the sensitivity towards certain model parameters
and the necessity of a regularisation strategy. Furthermore, an efficient method
for the initialisation of calculations based on information from previous solutions
is outlined below. A suitable initialisation has the potential to reduce computing
times significantly.

3.1. Regularisation strategies. When only the free end-time T is minimised, i.e.,
the objective function is J = α0T , the computed control tends to be non-smooth
and a so-called “bang-bang solution” is obtained. For the truck-container system
performing a braking manoeuvre in minimum time, it is intuitive that the truck
accelerates as long as possible and then brakes with the maximum possible force
until it comes to a halt. The optimal solution resembles this intuitive behaviour,
yet the optimisation algorithm struggles to find an optimal control without frequent
jumps, unless a regularisation term is added to the objective function. Two different
regularisation approaches have been implemented and tested.

Let α0 > 0. Solving the discretised OCP for the modified objective function

J̃ = α0T +
α2T∆t

2m2
T

N−1∑
j=0

(uj)2 +
α4T∆t

2m2
T

N−2∑
j=0

(
uj+1 − uj

∆t

)2

, (3.1)

regularises the solution because the control effort is minimised in addition to the
final time. When considering only α2 6= 0, while α4 = 0, as proposed by Betts [1,
Ch. 5.5], the regularisation strategy fails for poor initial guesses of T . It turns out
that an alternative regularisation strategy that punishes jumps and oscillations in
the control, i.e. with α4 6= 0, is more robust. As we assume that u ∈ L∞, the
derivative u′ does not exist in general, thus additional assumptions concerning the
control have to be made. Considering the control u as a state variable subject to the
ODE-constraint u′ = ξ, where ξ ∈ L∞ is the new control, yields that u ∈ W 1,∞.
Physically, the change in the control variable from u to ξ means controlling the
jerk instead of the acceleration. It can be observed that this regularisation strategy
yields more stable results, but there is still a slight dependency on the initial guess
for T , though the oscillations in u are reduced. While neither of the proposed

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1269

approaches is completely satisfactory, mixing the two strategies increases stability.
If the parameters α2 and α4 are chosen in a way that the regularisation term is two
or three orders of magnitude smaller than the actual objective term in the objective
function, the influence of the smoothing terms on the optimal solution is negligible.

3.2. Initialisation with the collocation method. In order to obtain solutions
with increased accuracy, the discretisation of the PDE and ODE must be refined.
Both the number of variables and the number of nonzero entries in the Jacobian is
O(NM). To reduce computing times, the collocation method can be employed to
initialise a problem with a refined discretisation by interpolating a solution obtained
on a coarse grid. Given a discrete solution on a coarse grid, the solution of the ODE
and PDE is approximated by interpolating polynomials. Evaluating the resulting
spline at the gridpoints of a refined grid yields a discrete starting vector for the
refined problem. In general, the initialisation vector does not satisfy the constraints
due to the interpolation error. Nevertheless, the optimisation algorithm needs fewer
steps to find a feasible point, as the initial point is already close to feasibility. The
solution for N = 300 has been utilised to initialise the problems with N = 450 and
N = 900. We observe that a refined discretisation leads to more accurate results,
which is indicated by decreasing values for T with increasing N . Computing times
were reduced significantly by employing the collocation method. It was observed
that only about a third of the computing time is required to find the solution when
the problem is initialised by collocation.

4. Implementation with sqpfiltertoolbox. The software sqpfiltertoolbox

is written in Fortran 90 and implements different sequential quadratic and sequential
linear programming methods for general nonlinear optimisation problems. It was
originally developed by M. Gerdts for small- to medium-scale problems with dense
Jacobian and Hessian matrices [6]. Although there are more sophisticated, yet more
complicated algorithms for large scale and sparse optimisation problems available
(see e.g. [1, Ch. 2.3]), for the example presented in this paper, the SQP active-set
method is employed, as it is implemented in the sqpfiltertoolbox. Nevertheless,
some adjustments to the algorithm must be made to exploit the sparsity and to
tackle the challenges arising from the large scale of the problem. At the centre of
interest is the solution of the KKT system in each QP iteration step. This section
focuses on the comparison of different methods for the solution of the KKT systems
and the adjustments that have to be made to ensure global convergence of the SQP
method.

4.1. Sequential quadratic programming. For convenience, we briefly review
the SQP method. To adjust to the common notation in nonlinear programming, in
this subsection the vector of optimisation variables is referred to as x ∈ Rn and all
equality and inequality constraints are comprised in the vector c : Rn → Rm. The
objective function is denoted by f : Rn → R. It is assumed that the functions f
and c are at least twice continuously differentiable with Lipschitz continuous second
derivatives. The general formulation of a nonlinear program is now

minimise
x∈Rn

f(x) (4.1a)

subject to ci(x) = 0, i ∈ R, (4.1b)

ci(x) ≤ 0, i ∈ S, (4.1c)

1270 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

where the index set R contains the indices of the equality constraints, while the
indices of the inequality constraints are included in the set S. At a given point x,
the active set A(x) is the union of the set of equality constraints R with the indices
of the active inequality constraints

A(x) = R∪ {i ∈ S | ci(x) = 0}. (4.2)

The Lagrangian of the NLP (4.1) is

L(x, λ) = f(x) + λ>c(x),

where λ ∈ Rm comprises here all Lagrange multipliers. For the first-order optimality
conditions to hold, a constraint qualification must be satisfied. For further consider-
ations, the linear independence constraint qualification was assumed [13, Def. 12.1].
In this context, the Hessian H(x, λ) = ∇2

xxL(x, λ) is well-defined.
The SQP method solves a sequence of quadratic models for the objective with

linearised constraints

minimise
dk∈Rn

1

2
d>k Hkdk +∇f>k dk (4.3a)

subject to ∇ci(xk)>dk + ci(xk) = 0, i ∈ R, (4.3b)

∇ci(xk)>dk + ci(xk) ≤ 0, i ∈ S, (4.3c)

that approximate the NLP locally at (xk, λk), where Hk = H(xk, λk) and ∇fk =
∇f(xk). The QPs are solved by iterative methods, such as the active-set method.
The SQP algorithm starts from an initial point (x0, λ0) and iteratively calculates
KKT points (dk, λk+1) for (4.3) updating xk+1 = xk + dk, until (xk, λk) is a KKT
point of the original NLP.

As the complementarity condition must be satisfied at an optimal solution (x∗, λ∗),
the optimal Lagrange multipliers λ∗i associated with the inactive constraints ci(x), i /∈
A(x∗) are zero. Given a solution x∗ of (4.1) and assuming that (i) the Jacobian
of the active constraints A∗ at x∗ has full rank; (ii) H∗ is positive definite on the
nullspace of A∗; and (iii) strict complementarity holds, there is a local solution of
the QP (4.3) whose active set Ak is the same as the active set A(x∗) of the NLP
(4.1) at x∗, if (xk, λk) is sufficiently close to (x∗, λ∗) [13, p. 533]. Thus, locally the
QP can be treated as an equality constrained optimisation problem once the active
set is known. Given this fact, the local SQP method is equivalent to Newton’s
method applied to the first-order optimality conditions of the NLP and quadratic
convergence of the SQP method towards the solution can be achieved.

4.2. Direct solution with exact second derivatives. In Section 2.4, the exact
first and second derivatives of the truck NLP are provided. Let Ak denote the active
set at the current iteration step k. The Jacobian of G associated with the active
set is referred to as G′Ak

. Having all derivatives available, the KKT system can be
assembled as follows

H B′> G′>Ak
C ′>

B′ 0 0 0
G′Ak

0 0 0
C ′ 0 0 0

d
λB
λG
λC

 =

−∇f

0
0
0

 , (4.4)

where H ∈ Rn×n is the exact Hessian and ∇f ∈ Rn denotes the gradient of the
Lagrangian of the QP. To improve readability, the index k, indicating the evaluation
of functions and derivatives at the point (xk, λk), has been omitted.

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1271

As we do not have to distinguish between the different Jacobians B′, G′Ak
and

C ′ for the further examination of the KKT system, we introduce the notation[
H A>

A 0

] [
d
λ

]
=

[
−∇f

0

]
(4.5)

and refer to A ∈ Rm×n as the Jacobian of the active constraints. The solution
of the system (4.5) poses two major challenges. Firstly, the KKT matrix is large
and sparse, which calls for a sophisticated and efficient solver for linear systems
of equations (LES), exploiting the sparsity. Secondly, the solvability of the system
must be guaranteed, i.e., certain criteria must be met, such that the KKT system
has a unique solution.

For the first challenge, open-source software for the solution of large, sparse and
symmetric systems of equations is available. The code MA57 [4] uses the so-called
multifrontal method, which is based on a sparse variant of Gaussian elimination.
Solving the specific KKT system presented above with MA57, revealed two aspects
that have a major influence on efficiency and stability of the algorithm:

(i) The control variables ui are of the order of magnitude 104. As sums of u2i
appear in the objective function of the NLP (2.3), the parameters α2 and α4

have to be chosen very small (∼ 10−7) to balance the control terms against the
other terms in the objective function. Terms of the form α2/m

2
T and α4/m

2
T

appear in the Hessian, causing the respective Hessian values to be very small
(∼ 10−13) and sometimes even close to machine precision. The issues with
round-off errors are overcome by a suitable scaling, e.g., by working with the
scaled acceleration û = u/mT .

(ii) As argued in [4, Ch. 6.3] the pivoting parameter threshold has a decisive
effect on the performance of MA57. Smaller values for threshold give a pivot
based on sparsity considerations and reduce the required computing time.
However, this can lead to an unstable factorisation. To resolve the trade-off
between computing time and stability, a suitable value is threshold = 10−2.

The KKT system (4.5) is not always solvable, but a necessary condition for
the KKT matrix to be non-singular is that A has full row rank and the reduced
Hessian Z>HZ is positive definite, where Z denotes the matrix whose columns
are a basis for the null space of A. Numerical tests showed that neither of the
two requirements are met in general, leading to a breakdown of the QP active-set
method. In the following, two modifications of the KKT matrix are proposed that
ensure the solvability of the KKT system.

Dual regularisation. In order to determine the row rank of A, being the Jacobian
of the active constraints, a singular value decomposition can be performed. Given
that A has more columns than rows it has full row rank, if the number of singular
values σi 6= 0 is equal to the number of rows. An examination of the singular values
reveals that A has full row rank at the solution z∗. If A has more rows than columns,
which can happen, for example, for a bad initial guess with too many active box
constraints, full row rank of the Jacobian cannot be achieved and the KKT matrix
is singular.

By means of dual regularisation, a non-singular KKT matrix can be obtained
even if A is rank deficient. The KKT system is altered to[

H A>

A −µI

] [
d
λ

]
=

[
−∇f

0

]
, (4.6)

1272 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

where µ > 0 is a parameter and I the identity. Introducing −µI on the (2,2)-block of
the KKT matrix corresponds to solving a QP problem with shifted constraints. As
the KKT system is perturbed this way, the obtained solution is only an approximate
solution of the original problem. However, if µ is sufficiently small, the deviation of
the approximate solution is negligible.

For the KKT system of the specific problem under consideration, the invasive
influence of the proposed technique could be reduced by introducing dual regular-
isation on a sub-block only. It has been found that it is sufficient to modify the
KKT system as

H B′> G′>Ak
C ′>

B′ 0 0 0
G′Ak

0 0 0
C ′ 0 0 −µI

d
λB
λG
λC

 =

−∇f

0
0
0

 , (4.7)

with regularisation in the (4,4)-block only. Numerical tests indicate that choosing
µ = 10−12 yields a stable configuration. Even when in the neighbourhood of the
solution, where regularisation would not necessarily be needed for the KKT matrix
to be non-singular, regularisation is still useful, as it speeds up the solution process
with MA57.

Primal regularisation. When using exact second derivatives instead of a BFGS ap-
proximation, neither the Hessian H nor the reduced Hessian Z>HZ can be guaran-
teed to be positive definite. By means of primal regularisation, positive definiteness
of the reduced Hessian can be achieved. In the following, a method for primal
regularisation is outlined. We refer to the inertia of the symmetric matrix K as
the triplet giving the numbers of positive, negative and zero eigenvalues of K:
In(K) = (n+, n−, n0). By repeatedly applying Sylvester’s law of inertia, we may
show that if the reduced Hessian Z>HZ is positive definite and A has full row
rank m, then In(K) = (n,m, 0). In case of dual regularisation the KKT matrix
K changes to the form in (4.6) with a nonzero (2,2)-block µI, for which a similar
result is obtained, see [5, Ch. 4, Proposition 2]. If In(K) = (n,m, 0) the local model
of the optimisation problem is convex and the KKT system (4.6) has a unique so-
lution. However, if In(K) 6= (n,m, 0), the local model of the optimisation problem
is non-convex and the QP algorithm will fail. In this case, the local model must be
convexified, which is referred to as inertia control in the following.

In order to determine whether or not inertia control must be performed, the
inertia of the KKT system must be computed. Fortunately the desired information
is a byproduct of the solution process with MA57. The KKT matrix is factorised by
PKP> = LDL> with the block diagonal matrix D. The inertia of D can easily be
determined. As a permutation with the matrix P does not change the eigenvalues
of K and L is non-singular, Sylvester’s law of inertia can be exploited, leading to
the result that In(K) = In(D). Thus, the inertia of the KKT matrix is available in
each QP iteration step and it can be checked whether K has the required inertia.

In case the inertia of the KKT matrix is not equal to (n,m, 0) in a QP iteration
step, inertia control is invoked. For inertia control the Levenberg method [1, Ch. 2.5]
with a modification to fit our specific application is used. Whenever inertia control is
invoked, the current QP is discarded and a new QP with the shifted Hessian is set up
and solved. The new search direction dk that solves the modified QP is significantly
biased toward a gradient direction and convergence is degraded [1, Ch. 2.5].

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1273

Numerical tests on the specific truck NLP showed that the inertia of the KKT
matrix has the desired properties in the neighbourhood of the solution, which implies
that the exact Hessian is accepted in the QP. Inertia control with the shifted Hessian
is invoked far from the solution only and local quadratic convergence to the solution
is still achieved.

4.3. Solution with the range-space method. The direct solution with exact
second derivatives described above turned out to be reliable and efficient. Never-
theless, there are some difficulties that motivate a different approach to the solution
of the KKT system. On the one hand, methods that solve the LES directly, such
as the method involving MA57 presented above, might fail for very large problems
because of a lack of available storage. On the other hand, deriving the exact Hessian
analytically for more complicated problems, e.g., for a 3D PDE, can be very time-
consuming and prone to errors. The method presented in the following circumvents
these disadvantages by approximating the Hessian with a Limited-Memory-BFGS
(LM-BFGS) matrix and solving the resulting KKT system with the iterative con-
jugate gradient method, which allows for the solution of larger systems.

In [13, Ch. 16] the range-space method for the solution of the KKT system[
W A>

A 0

] [
d
λ

]
=

[
−∇f

0

]
, (4.8)

which is based on block-elimination, is described. Note that the exact Hessian H
was replaced by an approximate Hessian W . By solving the first equation for

d = −W−1(∇f +A>λ) (4.9)

and substituting in the second equation, we obtain a system of equations for the
multipliers

B̃λ = b̃ (4.10)

with the right-hand side b̃ = −AW−1∇f . Here the matrix B̃ := AW−1A> is
symmetric and positive definite if W is symmetric and positive definite, which is
the case for an LM-BFGS approximation of the Hessian W . Thus (4.10) can be
solved iteratively with the conjugate gradient (CG) method. Once λ is obtained,
the search direction d can be computed by inserting λ in equation (4.9). Before
the LM-BFGS and CG methods are outlined, it must be mentioned that the range-
space method as presented above is well-defined for non-singular KKT systems only.
If the number of constraints is larger than the number of variables, the Jacobian
A is rank deficient and the KKT system is not solvable, leading to a breakdown
of the proposed method. As mentioned in the previous subsection, non-singularity
can be achieved by means of dual regularisation. Nevertheless, performing block-
elimination with a regularised KKT matrix leads to an ill-conditioned system of
linear equations. As this implies numerical difficulties, dual regularisation should
not be the method of choice.

4.3.1. The Limited-Memory-BFGS method. The exact Hessian can be approximated
by a quasi-Newton matrix, which is referred to as a BFGS matrix. By the way these
matrices are constructed, they exhibit a dense structure even though the exact Hes-
sian might be sparse. In [3], a limited memory quasi-Newton method is described
that uses a less memory-intensive representation of the BFGS matrix. To avoid
any confusion concerning nomenclature, it must be stated that the term LM-BFGS
method refers to an entire algorithm for the solution of large-scale unconstrained

1274 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

optimisation problems. As the optimisation problem examined in this article in-
volves nonlinear constraints, the LM-BFGS method can not be applied as a whole.
Still, the representation of the quasi-Newton approximation for the Hessian, which
is a crucial component in the LM-BFGS method, can be integrated in the range-
space method presented above. In particular, matrix-vector multiplications of the
form Wp and W−1p, where W denotes the LM-BFGS Hessian and p is an arbitrary
vector, can be performed efficiently.

The main difference between the BFGS and the LM-BFGS matrix representation
is the storage of the Hessian Wk in the k-th SQP iteration. Whereas a dense n× n
matrix is stored in the BFGS method, only a set of the l most recent update vector
pairs {si, yi}, i = k − l, . . . , k − 1 is stored, which defines the Hessian implicitly.
The update vector pairs are constructed as si := xi+1 − xi and yi = gi+1 − gi,
where gi = ∇f(xi), in line with the standard notation. After a new iterate has
been computed, the new update vector pair is either added to the set if k ≤ l, or
the oldest update vector pair is replaced by the newest if k > l. Thus, in the first l
steps, the LM-BFGS method resembles the classical BFGS method. For practical
purposes it is often sufficient to choose l ∈ [3, 7], which implies that only (2l + 1)n
instead of n2 elements must be stored to reconstruct the approximate Hessian.

Auxiliary matrices must be defined and stored for the representation of the quasi-
Newton matrix and its inverse. The storage and computational effort required to
obtain these matrices is negligible, especially because they have to be computed
once for each SQP-iteration only. If the initial matrix is of the form W0 = σkI, the
approximate Hessian is represented by

Wk = σkI −
[
σkSk Yk

] [σkS>k Sk Lk
L>k −Dk

]−1 [
σkS

>
k

Y >k

]
,with

Sk = [sk−l, . . . , sk−1] ∈ Rn×l,
Yk = [yk−l, . . . , yk−1] ∈ Rn×l,

(Lk)i,j =

{
s>k−l−1+iyk−l−1+j ; if i > j,
0 ; otherwise,

i, j = 1, . . .m,

Dk = diag[s>k−lyk−l, . . . , s
>
k−1yk−1] ∈ Rl×l,

where σk is a positive scalar that can either be fixed or updated in the course of
the iterations based on curvature information. The choice of σk will be addressed
in the subsection on restarting the BFGS method. In a similar manner, the inverse
of the LM-BFGS matrix is given by

W−1k = γkI −
[
Sk γkYk

] [R−>k (Dk + γkY
>
k Yk)R−1k −R−>k

−R−1k 0

] [
S>k
γkY

>
k

]
,

with (Rk)i,j =

{
s>k−l−1+iyk−l−1+j ; if i ≤ j,
0 ; otherwise,

i, j = 1, . . . ,m,

and with Sk, Yk and Dk as defined above and the scalar γk. Although there are
efficient algorithms for matrix multiplications involving the LM-BFGS Hessian and
its inverse, only matrix-vector multiplications are required in the context of the
range-space method and the iterative solution of the resulting LES. For an efficient
algorithm for the computation of the product Wkp see [3, Ch. 3.2].

According to (4.12) the computation of the product W−1k p involves multiplica-
tions with the inverse of the matrix Rk. Since l is small and Rk is triangular, the

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1275

inverse R−1k can be provided with little computational effort. Furthermore, the in-

verse needs only be computed once per SQP-iteration. In total, (4l+ 1)n+ (5/2)l2

multiplications are required to obtain the matrix-vector product.
In the context of the range-space method, a linear system of equations of the

form (4.10) must be solved. The matrix B̃ is never computed and stored explicitly.
The matrix A is stored in the coordinate storage format, whereas the matrix W−1

is represented as an LM-BFGS matrix. Hence, direct methods, which would require
the explicit representation of the matrix B̃, are not suitable.

The main effort of a single CG iteration lies in the computation of the matrix
vector product B̃pk. In the context of the range-space method this product has the
form AW−1A>pk. As mentioned above, the matrix B̃ is not available in its explicit
form. Thus, the product B̃pk involves three consecutive matrix-vector products. For
a detailed convergence analysis of the CG method and the essential preconditioning,
see [13, pp. 112-119].

Although preconditioning can speed up convergence significantly, the overall com-
puting time is not necessarily reduced, as computational effort is required to obtain
a preconditioning matrix and to perform arithmetic operations with its inverse.
Therefore, the choice of a suitable preconditioning matrix is problem dependent. In
the context of the range-space method with a quasi-Newton approximation of the
Hessian, the coefficient matrix B̃ is not explicitly known. In this context, the SSOR
and the Cholesky preconditioner are not suitable. Thus, the Jacobi preconditioner
has been chosen for further considerations. Detailed information on the efficient
computation of the preconditioner is given in the following subsection.

4.3.2. Implementational details. By slightly modifying the presented algorithms
above, i.e., the range-space method with an LM-BFGS approximation solved by
the CG method, and taking advantage of the characteristic structure of the QP
subproblem, the computational effort can be reduced substantially.

Preconditioning the CG method: For computational reasons, the diagonal of the
coefficient matrix B̃ = AW−1A> is the preconditioner of choice for further consid-
erations. Nevertheless, the overall computing time increases, if the preconditioner
is recalculated in each QP iteration. However, by exploiting the structure of the
QP iterations, the diagonal preconditioning matrix M̃ can be obtained efficiently,
reducing the overall computing time. In the first QP iteration, M̃ must be com-
puted entirely, but can be updated in the subsequent iterations with very little
computational effort. The i-th diagonal element of the preconditioning matrix m̃ii

is obtained by pre- and post-multiplying the coefficient matrix with the i-th unit
vector ei

m̃ii = e>i AjW
−1A>j ei,

which involves three matrix-vector products. The index j denotes the QP iteration.
Depending on the result of the j-th QP iteration, three cases must be distinguished.
(i) If the computed stepsize is accepted, the Jacobian of the active constraints does
not change in the (j + 1)-th iteration, which implies that Aj+1 = Aj . Therefore
the preconditioner can be reused. (ii) In case the constraint with index i is deacti-
vated, Aj+1 is obtained by deleting the i-th row in Aj . Instead of recomputing the
preconditioner, it can be updated without any computational effort by deleting the
i-th row. (iii) This possible case involves the activation of a constraint with index
i, which implies that Aj+1 results from Aj by adding a row at the i-th position.

1276 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

The preconditioner M̃ is updated by adding a row and column at the respective
position, with the diagonal element m̃ii = e>i Aj+1W

−1A>j+1ei.
If these update formulae are considered, the main effort of computing the precon-

ditioner lies in the first QP iteration, where the preconditioner must be determined
from scratch. The effort required to update the preconditioner is negligible. The
numerical results show that preconditioning with updates instead of recomputation
reduces the number of required CG iterations by about 15%.

Initialising the CG method: If no information on the solution of the LES is available,
the CG method is initialised with λ0 = 0. However, after a deactivation step in
the j-th QP iteration, the initial point can be chosen so that only very few CG
iterations are necessary to achieve convergence. As the QP stepsize is zero in a
deactivation step, the right-hand side of the KKT system (4.8) does not change in
the following iteration. If the i-th constraint was deactivated, the Jacobian of the
active constraints is updated by deleting the i-th row. Reconsidering the LES that
is to be solved by the CG method

AW−1A>λ = −AW−1∇f, (4.13)

the following observation can be made: as the Jacobian of the active constraints is
sparse and exhibits a block structure, the deletion of a row has little impact on the
structure of the system above. The solution of the system changes slightly, as only
a few multipliers in λ are impacted by the change. If we initialise λ0 = λ \ {λi} in
the (j+ 1)-th QP step where λ are the multipliers of the j-th QP step in which the
constraint with index i was deactivated, the convergence rate of the CG method
can be increased significantly. In several calculations it has been observed that only
one CG iteration is needed after a deactivation step. Although this result cannot be
generalised for other problems, in the context of the NLP considered in this study,
which has linear box constraints as inequality constraints only, the careful choice of
an initial point λ0 speeds up the CG method. The numerical results reveal that the
average number of CG iterations needed for each QP drops by about 15% when the
initial point is chosen as described above. Nevertheless, numerical difficulties were
encountered more frequently for initial guesses far from the solution and the overall
algorithm turned out to be less robust. This behaviour might be unexpected at
first, as a different initial point in the CG method should not change the solution.
Bearing in mind the fact that the CG method is an iterative method that terminates
when the residual is smaller than a certain tolerance CGTOL, it is not surprising that
different initial guesses lead to slightly different solutions in the iteration process.
Even if the residual has machine precision, it cannot be concluded that the solution
has the same precision. A slightly different solution in each QP might lead to
activation or deactivation of different constraints and thus impact the overall SQP
procedure. Therefore, the initialisation with the multipliers of the previous iteration
may not have a positive effect. All calculations with the range-space method in the
following subsection on numerical results were performed with an uninitialised CG
method, i.e., λ0 = 0. Stable results were obtained with CGTOL = 10−14, which was
chosen as the standard value for all calculations performed with the range-space
method.

Tuning the LM-BFGS method: There are several adjustments to the LM-BFGS
method to speed up global convergence of the SQP algorithm. Three modifications
in particular are addressed in the following.

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1277

(i) When the initial guess is far away from the solution, it is often useful to
perform a certain number of steepest-descent steps. In this case the quasi-Newton
Hessian is replaced by the identity matrix and arithmetic operations involving the
Hessian and its inverse require less computational effort.

(ii) As outlined in Subsection 4.3, a certain number m of vector pairs is stored to
reconstruct the LM-BFGS Hessian approximation. If the number of SQP-iterations
exceeds m, the newest vector pair replaces the oldest one. Although “old” curvature
information is discarded this way, the convergence rate can be improved by deleting
all update vectors and restarting the LM-BFGS method with a scaled identity
matrix. In [12, Ch. 10] Luenberger and Ye propose to restart after a fixed amount
of iteration steps. However, it is also possible to introduce criteria that trigger a
restart. For example, the reduction in the constraint violation or in the gradient of
the Lagrangian can be measured and compared to the previous iterations. If either
of the two criteria

max(0, |c(xk)|) ≤ α min
j=1,...,r

(max(0, |c(xk−j)|)),

||∇xL(xk, λk)|| ≤ α min
j=1,...,r

||∇xL(xk−j , λk−j)||

with a variable integer r and 0 < α < 1 (e.g. α = 0.99), is violated after the k-
th iteration, the LM-BFGS method is restarted. Numerical experiments indicate
that choosing r as the number of iterations since the last restart yields satisfactory
results. On average, the restart is triggered after 3-4 iteration steps.

It turns out that performing steepest-descent steps before starting the LM-BFGS
Hessian approximation often has a detrimental effect, as computing times increase
in most cases. However, restarting the LM-BFGS method has a beneficial impact.
Both a restart after a fixed amount of iteration steps and the automated restart
reduce computing times significantly, where the automatic restart is superior to the
fixed restart [15, Table B.7].

(iii) As proposed in [12, Ch. 10] and [11, Ch. 4], the performance of the LM-
BFGS method can be improved substantially by means of self-scaling. After a
restart in SQP-iteration k, the quasi-Newton matrix is initialised with a scaled
identity H0 = σkI with

σk =
y>k sk
s>k sk

,

where [sk, yk] is the latest update vector pair [3, p. 142]. Luenberger, Ye and Liu
propose scaling the inverse Hessian H−10 = γkI with

γk =
y>k sk
y>k yk

.

Since γk 6= 1/σk, the two methods are not equivalent. Both scaling variants have
been implemented and tested, where self-scaling with σk turned out to be more
efficient. In numerical experiments, a decisive beneficial impact of self-scaling was
revealed, which has the potential of reducing computing times by about two thirds.

5. Numerical results and evaluation. All numerical experiments were per-
formed on a machine with 2 Hexa core Intel Xeon CPU X5680s (-HT-MCP-SMP-)
with 3.33 GHz each.

In Figures 2 and 3 results for different manoeuvres of the truck-container system
are shown. In the first case, the truck performs a braking manoeuvre over a distance

1278 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

0 0.2 0.4 0.6 0.8 1

normalized time t/T

-20000

-15000

-10000

-5000

0

fo
rc
e
[N

]

control

0

1

0.5

4

1

h
ei
g
h
t
o
f
w
a
te
r
co
lu
m
n
[m

]

height of water column

1.5

normalized time t/T

0.5

position in water container [m]

2

2

0 0

Figure 2. Optimal solution: control force u(t) (left) and fluid
column height h(t, x) + b(x) (right) for N = 300, M = 10 (final
time minimised, T = 10.8s) and a straight fluid tank bottom.

0 0.2 0.4 0.6 0.8 1

normalized time t/T

-20000

-15000

-10000

-5000

0

fo
rc
e
[N

]

control

0

1

0.5

4

h
ei
g
h
t
o
f
w
a
te
r
co
lu
m
n
[m

]

1

height of water column

normalized time t/T

0.5

position in water container [m]

1.5

2

0 0

Figure 3. Optimal solution: control force u(t) (left) and fluid
column height h(t, x) + b(x) (right) for N = 300, M = 10 (final
time and fluid-level deviation minimised, T = 19.1s) and a straight
fluid tank bottom.

of 100m, where only the final time is minimised (Problem (1)), whereas in the second
case, the fluid-level deviation is also minimised (Problem (2)). Figure 4 shows the
results for Problem (1) with a non-straight fluid tank bottom. In all three cases,
the control looks sufficiently smooth, with the undesired oscillations being damped
by the smoothing terms. Before discussing the performance of the two different
solution techniques examined in this paper, we observe that the solution process for
Problem (1) takes significantly more time than for Problem (2), see [15, Tables B.2,
B.3, B.7 – B.9]. Comparing the controls in Figures 2 and 3 for the different problems,
reveals that most of the control variables in (1) are active, i.e., at their lower or
upper bounds, whereas none of the control variables are active in Problem (2). It
can be concluded that a significant share of computational effort is connected to
the determination of the active set.

As the numerical results in [15, Appendix B] show, the two different solution
strategies examined in this study perform differently. The direct Method (A) in-
volving the solution of the KKT systems with MA57 is clearly superior to the range-
space Method (B) with the quasi-Newton approximation of the Hessian and the

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1279

0 0.2 0.4 0.6 0.8 1

normalized time t/T

-20000

-15000

-10000

-5000

0

fo
rc
e
[N

]

control

0

1

0.5

4

h
ei
g
h
t
o
f
w
a
te
r
co
lu
m
n
[m

]

1

height of water column

normalized time t/T

0.5

position in water container [m]

1.5

2

0 0

Figure 4. Optimal solution: control force u(t) (left) and fluid
column height h(t, x)+ b(x) (right) for N = 150, M = 5 (final time
minimised, T = 11.5s). The bottom of the fluid tank is given by
the linear function b(x) = −x/8 + 1/2, 0 ≤ x ≤ L = 4.

iterative solution of the linear systems of equations. Not only does Method (A) re-
quire only a fraction of the computing time of Method (B), but also higher solution
accuracies can be obtained with Method (A). Furthermore, Method (A) succeeds
in solving problems (1) and (2) with a great range of initial guesses and scaled
objective functions [15, Tables B.2 – B.5]. For Problem (1) Method (B) can cope
with a variety of initial guesses, too, yet the algorithm struggles to find feasible
points in some cases for Problem (2). For the coarsest discretisation N = 150,
M = 5 the algorithm breaks down without finding a feasible point. “Hot start-
ing” (HS) the problem with the current iterate as the next initial guess, fixes the
feasibility problems, and a solution is attained at the cost of increased computing
times. Furthermore, Method (B) solves Problem (2) for finer discretisations much
faster, when initialised by collocation. However, Method (B) is more sensitive to
scaling in the objective function, sometimes leading to a breakdown of the method
or yielding inaccurate solutions [15, Table B.10]. It can be concluded that Method
(A) is more robust than Method (B), for which numerical difficulties concerning
scaling and different initial guesses emerged more often.

Moreover, due to the use of exact second derivatives, quadratic convergence to
the solution can be achieved with Method (A), whereas Method (B) does not ex-
hibit that property. In Table 1 an excerpt of the solution output of Problem (1),
exhibiting the quadratic convergence, is depicted.

We conclude that, if exact second derivatives are available, Method (A) is the
method of choice for the examined application as it is faster and more robust. Yet,
extending the truck-container model to three dimensions would make the derivation
of the exact Hessian cumbersome and prone to errors. In this case, Method (B)
could be employed, which does not need exact second derivatives, at the cost of
significantly higher computing times. The introduction of Method (B) as an alter-
native to (A) was also motivated by the assumption that the application of a direct
method may no longer be viable for very large problems because of memory limi-
tations of the LES solver. It was shown that Method (A) solved problems with up
to 104487 variables on a grid with N = 1200 and M = 40 within about 6.2 hours,
see Table 2. Based on the observation that Method (B) requires about a fifty times
this computing time, computation times of more than 12 days for the solution of

1280 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

ITER QPIT ALPHA OBJ CV KKT

0 0 0.0000E+00 0.100000050000E+01 0.9893E+02 0.1000E+00

1 224 0.1000E+01 0.102710574197E+01 0.1811E+02 0.2648E-01

2 6 0.1000E+01 0.107819921922E+01 0.2086E+00 0.5244E-02

3 24 0.1000E+01 0.109015429623E+01 0.4723E-02 0.2969E-03

4 5 0.1000E+01 0.109049950972E+01 0.3198E-05 0.4477E-06

5 3 0.1000E+01 0.109049961114E+01 0.4253E-11 0.4570E-12

===

END OF SQP METHOD

===

Table 1. Solution output of Problem (1) with M = 5 and N =
150. CV and KKT denote the norm of the constraint violation and
the norm of the gradient of the Lagrangian, respectively. QPIT is
the number of QP iterations and OBJ the value of the objective
function.

the same problem would be required. For even larger problems, the solution with
Method (B) is unlikely to yield a result in an acceptable time.

Finally, we compare the performance of Method (A) with SNOPT. For these runs,
a sequence of problems of type (1) is set up with gradually refined discretisation.
Each problem except the first is initialised using collocation based on the previous
solution on a coarser grid. Despite the fact that SNOPT does not rely on exact second
derivative information, it requires much less computing time than Method (A) in
most cases, as it can be observed in Table 2. However, the problem with N = 1200
and M = 40, which has 104487 variables, is solved much faster by Method (A).
This can be ascribed to the superior matrix factoring technique for very large and
sparse matrices employed by MA57.

6. Conclusion and future work. In this article, an optimal control problem for
an example of a fully coupled mechanical system, i.e., the truck-container system,
was solved. The infinite-dimensional optimal control problem was fully discretised,
where suitable integration schemes were employed for the discretisation of the cou-
pled system of ordinary and partial differential equations that describe the motion
of the truck, container, and fluid.

The finite-dimensional discretised optimal control problem, which is equivalent to
an optimisation problem with nonlinear constraints, was solved with an SQP active-
set method, as implemented in the software framework sqpfiltertoolbox. The
article focused on the solution of the linear systems of equations, the so-called KKT
systems, which arise in each QP iteration step. Due to the characteristic structure
of a discretised optimal control problem with differential equations as constraints,
these LES are large and sparse, which calls for solvers that exploit their structure
for efficiency.

Two solution techniques were implemented and examined in the context of this
study. Method (A) relies on the direct solution of the KKT systems, where both
the Hessian of the Lagrangian and the Jacobian of the constraints were derived
analytically. The resulting KKT systems were solved with MA57, a solver for sym-
metric large and sparse systems. Both primal and dual regularisation techniques

STRUCTURE-EXPLOITATION FOR OPTIMAL CTRL. 1281

problem data: FEASTOL = 1.00E-008 α0 = 1.00E-001

OPTTOL = 1.00E-008 α1 = 0

µ = 1.00E-012 α2 = 1.00E-007

threshold = 1.00E-002 α3 = 1.00E+000

initialisation by collocation α4 = 1.00E-007

c0 = 1.00E-003

N M J̃ SQPIT QPIT t[s] t[s] SNOPT

150 5 1.0905 5 263 10.4 1.6

300 10 1.0870 3 47 19.4 7.8

450 15 1.0840 3 49 91.6 25.4

600 20 1.0810 3 49 281.9 99.0

900 30 1.0751 4 110 2824.7 1541.0

1200 40 1.0705 4 289 22333.2 162545.6

Table 2. Sequence of problems with gradually refined discreti-
sations solved with sqpfiltertoolbox Method (A) and SNOPT.
SQPIT states the number of SQP iterations.

were implemented that ensure the convergence of the method for a variety of initial
guesses. In Method (B) the solution of the KKT system was split up in the solution
of two smaller dimensional linear systems via block-elimination. The exact Hessian
was replaced by a positive-definite Limited-Memory-BFGS approximation and the
resulting linear systems were solved with the iterative conjugate gradient method.
An efficient preconditioning method that takes advantage of the procedure of the
QP active-set strategy was developed. Furthermore, several restarting and scaling
techniques for the Limited-Memory-BFGS matrix representation were implemented
and tested, which speed up the overall solution process significantly.

Numerical experiments showed the clear superiority of Method (A) in many
respects. Not only did Method (A) solve the test problems about a fifty times
faster than Method (B), but also found solutions with better accuracy. In some
cases, Method (B) struggled to find a feasible point and numerical difficulties were
encountered for certain initial guesses and badly scaled objective functions. Never-
theless, Method (B) has the advantage of not being dependent on the availability
of exact second derivatives. If the considered model of the mechanical system were
extended to three dimensions and the Saint-Venant equations to two dimensions,
the analytical derivation of the exact derivatives might not be desirable. Conse-
quently, Method (B) is still relevant for applications where the exact Hessian is not
available.

Method (A) outperforms the FDTO approach described in [7], yielding up to
several thousand SQP iterations and computing times of about a day for M = 20.
While the FOTD approach in [10] exhibits computing times of several hours for the
same grid, it is limited to fixed terminal times. Method (A) exhibits computing
times of a couple of minutes for the same grid and requires only up to 5 SQP
iterations.

For further improvement of the overall solution process with Method (A), the
efficient determination of the active set, which consumes a significant share of the

1282 J.-H. WEBERT, P. E. GILL, S.-J. KIMMERLE AND M. GERDTS

computational effort, could serve as an approach. As proposed, e.g. in [1, Ch. 2.3]
or [8], a sequence of similar LES, as they arise in the QP iterations, can be solved
efficiently by means of the Schur-complement method. As a further possible im-
provement of our method, we could start with BFGS updates of the identity matrix
as approximation to the Hessian, guaranteeing a positive definite matrix, and once
the iterate is close to the solution, we switch to the exact Hessian. One way of
reducing the number of state variables is to use a non-equidistant coarse grid, with
a refinement only at the left and at the right end of the container.

Acknowledgments. J.-H. Webert would like to thank the University of California
San Diego and especially Prof. Philip Gill for integrating him into the faculty and
for establishing a creative working atmosphere during his stay. The second author is
supported by National Science Foundation Grants DMS-1318480 and DMS-1361421.

REFERENCES

[1] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, 2nd edi-

tion, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
[2] M. Breuß, The correct use of the Lax-Friedrichs method, ESAIM: Mathematical Modelling

and Numerical Analysis, 38 (2004), 519–540.

[3] R. Byrd, J. Nocedal and R. Schnabel, Representations of quasi-Newton matrices and their
use in limited memory methods, Mathematical Programming, 63 (1994), 129–156.

[4] I. S. Duff, MA57–A code for the solution of sparse symmetric definite and indefinite systems,

ACM Trans. Math. Softw., 30 (2004), 118–144.
[5] A. Forsgren, Inertia-controlling factorizations for optimization algorithms, Applied Numerical

Mathematics, 43 (2002), 91–107. 19th Dundee Biennial Conference on Numerical Analysis.

[6] M. Gerdts, SQP Filtertoolbox within Software Package OCPID-DAE1, Optimal Control
and Parameter Identification with Differential-Algebraic Equations of Index 1. Users Guide

(Online Documentation), Universität der Bundeswehr München, Neubiberg/München, 2010.

(Available from: http://www.optimal-control.de/index.php/software.)
[7] M. Gerdts and S.-J. Kimmerle, Numerical optimal control of a coupled ODE-PDE model of

a truck with a fluid basin, Discrete Contin. Dynam. Systems - A , 2015 (2015), 515—524.
[8] P. E. Gill and E. Wong, Methods for convex and general quadratic programming, Math. Prog.

Comp., 7 (2015), 71–112.

[9] P. E. Gill, E. Wong, W. Murray and M. A. Saunders, User’s Guide for SNOPT Version 7.4:
Software for Large-Scale Nonlinear Programming, 2015.

[10] S.-J. Kimmerle and M. Gerdts, Necessary optimality conditions and a semi-smooth Newton

approach for an optimal control problem of a coupled system of Saint-Venant equations and
ordinary differential equations, Pure Appl. Funct. Anal., 1 (2016), 231–256.

[11] D. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Mathematical Programming, 45 (1989), 503–528.

[12] D. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd edition, Springer, US,
2008.

[13] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, Springer Series in Opera-
tions Research and Financial Engineering, Springer, New York, 2006.

[14] N. Petit and P. Rouchon, Dynamics and solutions to some control problems for water-tank
systems, IEEE Transactions on Automatic Control , 47 (2002), 594–609.

[15] J.-H. Webert, Structure-exploiting Optimization Algorithms for an Optimal Control Prob-
lem with Coupled Hyperbolic and Ordinary Differential Equation Constraints M.Sc. thesis,
Universität der Bundeswehr München, Neubiberg/München, 2015.

Received April 2017; revised September 2017.

E-mail address: jan hendrik webert@web.de

E-mail address: pgill@ucsd.edu

E-mail address: sven-joachim.kimmerle@unibw.de

E-mail address: matthias.gerdts@unibw.de

http://www.ams.org/mathscinet-getitem?mr=MR2589623&return=pdf
http://dx.doi.org/10.1137/1.9780898718577
http://www.ams.org/mathscinet-getitem?mr=MR2075758&return=pdf
http://dx.doi.org/10.1051/m2an:2004027
http://www.ams.org/mathscinet-getitem?mr=MR1268604&return=pdf
http://dx.doi.org/10.1007/BF01582063
http://dx.doi.org/10.1007/BF01582063
http://www.ams.org/mathscinet-getitem?mr=MR2075977&return=pdf
http://dx.doi.org/10.1145/992200.992202
http://www.ams.org/mathscinet-getitem?mr=MR1936104&return=pdf
http://dx.doi.org/10.1016/S0168-9274(02)00119-8
http://www.optimal-control.de/index.php/software
http://www.ams.org/mathscinet-getitem?mr=MR3462485&return=pdf
http://dx.doi.org/10.3934/proc.2015.0515
http://dx.doi.org/10.3934/proc.2015.0515
http://www.ams.org/mathscinet-getitem?mr=MR3315696&return=pdf
http://dx.doi.org/10.1007/s12532-014-0075-x
http://www.ams.org/mathscinet-getitem?mr=MR3630597&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1038245&return=pdf
http://dx.doi.org/10.1007/BF01589116
http://www.ams.org/mathscinet-getitem?mr=MR2423726&return=pdf
http://dx.doi.org/10.1007/978-3-319-18842-3
http://www.ams.org/mathscinet-getitem?mr=MR2244940&return=pdf
http://dx.doi.org/10.1007/b98874
http://www.ams.org/mathscinet-getitem?mr=MR1893517&return=pdf
http://dx.doi.org/10.1109/9.995037
http://dx.doi.org/10.1109/9.995037
mailto:jan_hendrik_webert@web.de
mailto:pgill@ucsd.edu
mailto:sven-joachim.kimmerle@unibw.de
mailto:matthias.gerdts@unibw.de

	1. Introduction
	2. Mathematical model with coupled hyperbolic and ordinary differential equations
	2.1. Mathematical model
	2.2. The optimal control problem
	2.3. Discretisation
	2.4. Derivation of the Hessian and the Jacobian

	3. Model verification
	3.1. Regularisation strategies
	3.2. Initialisation with the collocation method

	4. Implementation with sqpfiltertoolbox
	4.1. Sequential quadratic programming
	4.2. Direct solution with exact second derivatives
	4.3. Solution with the range-space method

	5. Numerical results and evaluation
	6. Conclusion and future work
	Acknowledgments
	REFERENCES

